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a b s t r a c t

Finding useful information from the Web becomes increasingly difficult as the volume of Web

data rapidly grows. To facilitate effective Web browsing, Web designers usually display the

same type of information with a consistent layout (referred to as a Web pattern). Discovering

Web patterns can benefit many applications, such as extracting structured data. This paper

presents a generic framework for discovering Web patterns and recognizing their instances

(i.e., structured data) based on graph grammars. In our framework, a Web pattern is visually

yet formally specified as a graph grammar, which is automatically induced through a gram-

mar induction engine. The grammar induction engine is featured by converting the problem of

(2-dimensional) graph grammar induction to (1-dimensional) string induction. Based on the

induced pattern, matching instances are recognized from Web pages through a graph pars-

ing process. We have evaluated the framework on twenty-one e-commerce Web sites. The

evaluation results are promising with a high F1-score.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Finding useful information from the Web becomes increasingly difficult as the volume of Web data rapidly grows. HTML,

being the dominant language for the Web, describes the appearance of a Web page, but does not explicitly reveal the under-

lying information organization. Researchers have attempted to analyze HTML DOM structures and extract useful information.

However, HTML has been used diversely by different Web designers. For example, tables can be used with different purposes,

e.g., presenting tabular data or dividing the space into grids. The diversity of HTML usages makes it challenging to analyze Web

data using HTML source codes. The complexity of DOM structures further complicates the problem of the Web data analysis. For

example, the DOM structure of the Google homepage alone includes approximately 140 HTML tags.

Recently, layout-based analysis [13,26,46,61] received more attention for analyzing and extracting Web data. Based on design

guidelines in Human Computer Interaction (HCI), Web designers usually organize Web information in a consistent layout among

different pages [45,26,56]. As a result, Web pages that include similar information are presented in a consistent layout even

though their HTML codes may be different. Therefore, layout-based analysis addresses the diversity issue to a certain degree.

Existing layout-based approaches are, however, typically optimized for a specific domain, such as news extraction [13].

This paper presents a generic framework for discovering Web patterns and recognizing their instances based on graph gram-

mars. In our framework, Web patterns reflect the commonly accepted practices in Web design and are used to display the same

type of information. In other words, a Web pattern is a two-dimensional structure that depicts a typical layout. Graph grammars,
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which visually yet formally model structures and concepts in a 2D fashion [42], provide a natural means to define Web patterns.

More specifically, a graph grammar is made of a set of grammatical rules (called productions). Each production defines local

spatial relations among relevant information objects while the complete graph grammar hierarchically glues those local spatial

relations together. By formalizing a Web pattern as a graph grammar, recognizing the instants of a Web pattern is implemented

as a graph parsing process in a bottom-up fashion.

Since it is time consuming to manually summarize a Web pattern as a graph grammar, our framework provides an automatic

grammar induction engine to support the scalability and applicability. Briefly, the grammar induction engine automatically ex-

tracts the most common structure (i.e., a Web pattern) from sample Web pages and accordingly represents the recognized struc-

ture hierarchically as a graph grammar. The lack of domain knowledge in grammar induction may make an induced grammar

hard to understand, partly due to program-generated names. In our framework, grammar induction is complemented with a

sample-based grammar editor. The grammar editor provides a graphical user interface that allows the user to create or revise a

graph grammar by directly manipulating information objects in the screenshot of a Web page.

In summary, this paper presents a grammar-based approach to automatically discover a Web pattern and recognize instances

of the discovered pattern. Our approach is featured by a graph generation process that creates a spatial graph from a Web page.

The graph generation reduces the complexity of the original Web page while keeping important spatial information. A Web pat-

tern is automatically discovered by searching for the most important repetitive structure from spatial graphs through a grammar

induction algorithm. Distinct from existing approaches, our algorithm converts the problem of (2-dimensional) graph grammar

induction to (1-dimensional) string induction by taking advantage of spatial information.

This work extends our previous conference publication [43] by introducing a novel grammar induction algorithm. To our

knowledge, the proposed framework is the first to use a grammar induction method to identify Web patterns and recognize their

instances from the Web. We have evaluated our method on 21 Web sites by validating the instances of a Web pattern. The results

are promising, and the performance of our approach measured in F1-Score is better than that of the benchmark approach MDR

[32] (i.e., 97.16% of F1-Score of our approach versus 69.19% of MRD).

2. Related work

Extracting useful information from Web documents has been widely studied in recent years [31,39,44,48]. Based on the the-

oretical foundation, we can classify data extraction techniques into wrapper-based approaches and statistical model based ones.

The Wrapper-based approaches, such as [17,19,38], induce a set of rules to define the knowledge of data extraction. Statistical

models (such as Support Vector Machines [30] or Hidden Markov Models [21,47]) discover repetitive structures based on statis-

tical analysis. Distinct from wrappers or statistical models, our approach applies the state-of-the-art grammar technology (i.e.

the Spatial Graph Grammar [25]) as the theoretical foundation. Based on the Spatial Graph Grammar, the knowledge of data

extraction is visually defined through grammatical rules, which are decoupled from the data extraction process.

Based on DOM structures, several approaches [22,28,37] use the machine learning technique to automatically derive a wrap-

per based on a set of manually labeled training data. In a training set, information pieces of interest are manually tagged with

different labels, such as title or price. Based on the labels, those approaches [22,28,37] consider an HTML Web page as a sequence

of characters and search for common delimiter strings between labeled information pieces. Those common delimiter strings are

formalized as extraction rules in a wrapper for data extraction. Though the above approaches apply different technologies to

derive a wrapper, they all require a set of training data, which are manually labeled by human experts. In order to minimize the

effort of preparing a training set, Dalvi et al. recently proposed a generic framework for supervised wrapper induction based on

automatically obtained noisy training data [17]. Without requiring a training set, Amin and Jamil [4] extracted from a symbol list

of an HTML page a commonly occurring pattern of the highest length and super-maximal repeats. The pattern is converted to

a regular expression, which is subsequently used to extract the record level data items. Different from the above approach, the

regular expression in our approach implies spatial relations among relevant objects.

Some approaches [6,16] automatically derive a template from sample Web pages and use the extracted template to discover

structured records. In general, Web pages that are generated from the same template have the same DOM structure but different

actual contents. The multi-string alignment [16], statistical techniques [6] or tree matching and alignment [36] was used to

extract structured records from a set of Web pages that follow the same template. TTAG [14] traversed the DOM structures of

sample pages from the root to leaf nodes in a top down fashion and used the dynamic programming to compare and extract

repetitive patterns. Reis et al. [41] proposed a tree edit distance method to derive a template underlying sample pages and used

the derived template for data extraction. Recently, Sleiman and Corchuelo proposed an efficient simple multi-string alignment

algorithm for recognizing a template and its variable contents [49]. The above approaches [6,14,16,41,49] do not require manually

labeled data, which greatly reduces the manual effort in the data extraction process. However, they require that Web pages being

analyzed must follow the same template.

MDR [32] generated an HTML tag tree based on table and form related tags, e.g., table, form, tr, td, and etc. Then, MDR used the

string comparison technique to divide a Web page into different regions, in which data records are identified by calculating the

similarity between tag strings. Zhai et al. [58] proposed DEPTA that improved MDR and supported partial tree alignment. There-

fore, DEPTA accommodates variations among different Web pages and improves the applicability. Miao et al. identified the key

limitation of MDR as the pairwise comparison of consecutive segments [35]. In order to address this issue, they conducted data

extraction by comparing a pair of tag path occurrence patterns [35]. On the basis of MDR, Song et al. proposed the MiBAT algo-

rithm (Mining data records based on Anchor Trees), which automatically extracts data records including user-generated content
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[51]. Raeymaekers and Bruynooghe combined the tree-based approach with the string-based approach for supporting sub node

extraction [40]. Zhai et al. [59] rendered a Web page and allowed users to select information objects in the screen shot to define

a data pattern. Laber et al. [29] proposed a heuristic algorithm for extracting news articles based on DOM tree structure. This

approach used some statistical analysis to analyze the DOM tree elements and identify the relevant information objects. Alvarez

et al. [3] identified the data region of interest in a Web page and then used the clustering method, which grouped similar subtrees

in a DOM tree, to extract structured records. Bing et al. [9] proposed the Record Segmentation Tree (RST) and designed efficient

search pruning strategies to identify records. The Skoga framework [10] conducted a global analysis on the DOM structure to

detect data records based on a DOM structure-knowledge-driven detection model, which consists of background knowledge and

statistical knowledge. All of the above discussed methods use HTML DOM structure as the main source for data extraction. In-

stead, our approach implements data extraction based on the layout. The visual analysis can address the issues of complexity and

diverse usages of HTML DOM structures to a certain degree. By actually rendering a Web page, our approach supports dynamic

information objects which are generated at run time.

Recently, visual perception techniques have been applied to extract structured data. These approaches [13,46,61] basically

calculate the visual similarity among different Web pages to group semantically related information. ViPER [46] used the visual

information to separate and weight different data regions. Zheng et al. [61] introduced a template independent system to identify

news articles based on visual consistency. This approach summarizes a set of visual features to present news stories and automat-

ically generates a template-independent wrapper based on those visual features. Chen et al. [13] proposed a system for extracting

news stories based on visual perception. First, it identifies the areas that contain news stories based on the content functionality,

space continuity, and formatting continuity. After detecting the news areas, news stories are extracted based on the position,

format and semantics. The above two approaches [13,61] are limited to extract news stories, and are not applicable to other

domains. Instead, our approach is applicable to different domains. Furthermore, the usage of HTML structures in our approach

makes it efficient to recognize the boundary between different blocks. ViDE [33] utilized visual features to extract data records,

but this approach relied on a heuristic page segmentation algorithm [11], which was dependent on the HTML encodings. You et

al. [55] integrated a vision-based segmentation algorithm (i.e., VIPS [11]) with a DOM-based analysis to extract text blocks, which

were annotated based on a tree-structured conditional random fields model. This approach is applied to conference information

extraction. Anderson and Hong [5] defined the visual block model according to the layout of a page and calculated the similarity

to extract data records. The SILA approach [18] introduced a Positional Document Object Model (i.e., PDOM) that defined the spa-

tial arrangement among digital objects. Similar to the spatial graph, PDOM is independent of the internal HTML encodings and

simplifies the original Web page. Different from SILA, our approach uses a graph grammar to extract structured records rather

than calculating the visual similarity. Kong et al. [26] combined the image processing technique with graph grammars to extract

useful information. However, this approach needs a training set for recognizing atomic information objects.

The Hybrid methods consider both the DOM structure and visual perception. ViNTs [57] automatically recognized different

content shapes based on the visual position of information objects. Afterward, a wrapper is generated based on an HTML struc-

ture, which represents each shape. This approach still extracts information based on HTML DOM structures, though the wrapper

is derived from the visual analysis. Instead, our approach specifies extraction rules from both the layout and the DOM structure.

ViNTs is limited to search results, while our approach is general to different domains.

Our work is also related to the researches that divide a Web page into different blocks. Recently, Sleiman and Corchuelo

provided a comprehensive review on different approaches for region extraction [48]. Kovacevic et al. [27] used visual information

to build up an M-Tree, and defined heuristic rules to recognize common page areas, such as header, left and right menu, footer,

etc. Some approaches analyze the importance of different blocks within a single web page, such as a learning based approach

[50] or random walk model based approaches [53,54]. In these approaches, visual features, such as width, height, or position,

are used to recognize and analyze information blocks. The combination of natural language processing and DOM analysis [24]

or statistical analysis [23] was proposed to recognize the main content in a Web page. The TWWF approach [60] used the DOM

structure to divide a Web page. Ahmadi and Kong [1,2] used a hybrid approach for the block recognition. Xiao et al. [52] used a

vision-based analysis to divide a Web page into small blocks that are then merged to form leaf blocks based on the screen size

of a mobile device. Those leaf blocks are organized as a SubPage-tree. The above technologies can be potentially integrated with

our approach to improve the performance by eliminating noises.

In summary, our approach is the first attempt to apply spatial properties to induce graph grammars. By abstracting a concrete

Web page as a spatial graph, the pattern discovery can be considered as finding repetitive structures in a graph. Since a Web

pattern is in general formed hierarchically, it is natural to define a Web pattern through a graph grammar that provides a solid

theoretic foundation for two-dimensional reasoning. Graph grammar is particularly powerful in capturing the variation among

instances of a Web pattern by applying a production recursively. The grammar induction makes our approach applicable to

different domains. Once a Web pattern (i.e., a graph grammar) is identified automatically, it can be applied to different Web

pages of the same pattern to recover structured information. Our approach decouples the specification of a Web pattern from

data extraction. Consequently, our framework can efficiently recognize and validate evolving patterns by updating the graph

grammar without changing source codes. Decoupling pattern specification from data extraction makes our approach robust

to handle pattern evolution and variations among different Web pages. We summarized existing approaches mainly in two

categories. The first category analyzes the HTML DOM documents to identify repetitive structures. One of the most popular

methods is MDR [32]. The second category uses visual clues by rendering web pages, such as ViNTs [57] that analyzes the shape

of records displayed on a page. Our approach uses both DOM structure and visual perception, and is applicable to different

domains. Table 1 compares our approach with closely related approaches.
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Table 1

The summary of major techniques.

Method Description

Our approach DOM structure + visual perception based on graph grammar

ViNTs [57] DOM structure + visual perception

(applicable for search engines)

[35] DOM structure (tag path occurrence based on MDR)

[10] Knowledge based DOM structure analysis

DEPTA [58] DOM structure (improved MDR with partial tree alignment)

ViPER [46] Visual perception (edit distance to calculate similarity)

FiVaTech [36] DOM structure (tree matching, tree alignment and mining)

[3] DOM structure using the clustering technique

Table 2

The summary of Web patterns.

Web site name Pattern 1 Pattern 2 Web site Pattern 1 Pattern 2

1 http://shopping.yahoo.com/ × 22 http://www.epicurious.com ×
2 http://scistore.cambridgesoft.com/ × 23 http://www.cooking.com × ×
3 http://shop.lycos.com × 24 http://www.asiatravel.com ×
4 http://www.barnesandnoble.com × × 25 http://www.godaddy.com ×
5 http://www.borders.com × 26 http://www.radioshack.com ×
6 http://www.circuitcity.com × × 27 http://www.dell.com × ×
7 http://www.compusa.com × × 28 http://www.macys.com ×
8 http://www.drugstore.com × 29 http://www.buyflowersonline.com ×
9 http://www.ebay.com × × 30 http://www.buy.com × ×

10 http://www.etoys.com × 31 http://www.bestbuy.com ×
11 http://www.kidsfootlocker.com × 32 http://www.deals2buy.com ×
12 http://www.kodak.com × 33 http://www.6pm.com ×
13 http://www.newegg.com × × 34 http://www.bigdeal.com ×
14 http://www.nothingbutsoftware.com × × 35 http://www.shopzilla.com ×
15 http://www.overstock.com × 36 http://www.haggle.com ×
16 http://www.powells.com × 37 http://www.shop.com ×
17 http://www.softwareoutlet.com × 38 http://www.alibaba.com ×
18 http://www.ubid.com × 39 http://www.pricegrabber.com ×
19 http://www.amazon.com × 40 http://www.shopnbc.com ×
20 http://www.shopping.hp.com × 41 http://www.shopstyle.com ×
21 http://www.qualityinks.com/ × 42 http://www.target.com ×

Fig. 1. Pattern 1.
3. Web patterns

Our approach assumes a consistent layout across Web pages, referred to as a Web pattern. To justify our assumption, we

investigated 42 E-commerce Web sites, which included well-structured product information, and manually summarized two

patterns as shown in Table 2.

Pattern 1. As shown in Fig. 1, Pattern 1 presents product information from left to right. A product picture is displayed on

the left side, and other descriptive textual information is presented on the right side. The descriptive information may include

several lines of texts, which are displayed from top-down and left to right.

Pattern 2. As shown in Fig. 2, Pattern 2 presents information vertically. Either a product title or a product image is presented

on the top, followed by a list of textual lines.

In summary, each pattern prescribes the layout at a high level and records the essential spatial properties. Automatically

(through a grammar induction as discussed in Section 7) or manually designed graph grammars can form a library that indicates

commonly used Web patterns. A graph grammar in the library can be applied to a set of Web pages that followed the defined
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Fig. 2. Pattern 2.
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Fig. 3. Framework overview.
pattern. Web patterns can find many potential applications, such as extracting structured data, automatic consistency inspection,

or saving energy on OLED displays [12].

4. Approach overview

We present an approach, called Visual Engineering for Web Patterns, for specifying and validating Web patterns. This ap-

proach consists of three components as shown in Fig. 3. The graph generation component abstracts a Web page as a spatial graph

that simplifies the original Web page and highlights important spatial relations between information objects. The interactive

grammar design component visually specifies a Web pattern as a graph grammar. More specifically, a grammar induction engine

automatically summarizes a Web pattern from sample Web pages as a graph grammar, while the sample based grammar editor

can visually define or refine a grammar. The third component, i.e., the graph parser, parses the spatial graph of a given Web page

to identify instances of a defined Web pattern according to the graph grammar.

4.1. Graph generation

Graph generation is an important step in our approach since it simplifies original Web pages by removing (1) style and layout

elements that do not include any real content, (2) advertisements and (3) menus in the border areas. The simplification effectively

reduces the complexity of HTML pages and potentially eliminates variations among different Web pages. The graph generation
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Fig. 4. Graph generation.
process proceeds in the following steps: Web page rendering, node and edge generation, and graph optimization. The page

rendering step determines the actual layout of a Web page (i.e., the position and size of each element) and generates dynamic

elements. More specifically, the visual layout of a Web page is determined by three variables, i.e. (1) the actual HTML source

code that specifies the DOM structure of the page, (2) data items such as text and picture and (3) style sheets and client side

scripts which are executed by a browser at run time. In order to access dynamic contents generated through client-side scripts,

we first render a Web page. Then, we traverse each HTML element in the DOM structure and record the size and position of each

element. Our approach also fixes markup errors during the rendering step. After obtaining the dynamic/static HTML elements

and their spatial properties, the second step generates a spatial graph in which a node represents an information object and an

edge indicates a relation between the pair of connecting nodes. For example, Fig. 4 shows the screenshot of a Web page and its

corresponding spatial graph. The last step optimizes the spatial graph by removing noises (such as advertisements and menus).

4.2. Grammar design and pattern validation

Based on spatial graphs, a Web pattern is visually specified through a graph grammar that includes a set of productions. The

left graph in a production defines a composite information object, which is made of several atomic/composite information objects

that satisfy certain spatial relations in the right graph. A graph grammar hierarchically integrates local spatial relations together

to construct a Web pattern. Based on the graph grammar, a graph parser analyzes the spatial properties among information

objects in the bottom-up fashion and recognizes in the spatial graph all substuctures that are consistent with the graph grammar

(i.e., recognizing instances of a Web pattern). A graph grammar based specification brings the following benefits:

• A Web pattern defines essential spatial relations among objects at a high level. It is inevitable that there exist variations

among instances of a Web pattern. For example, a pattern displaying a news story may place a title on the top, followed by

several paragraphs. Different news stories may, however, have different numbers of paragraphs. A graph grammar is powerful

to handle such variations by applying a production recursively.

• It is a one-time effort to design a graph grammar. Once a graph grammar is defined, it can be applied to different Web pages

to validate instances of a defined Web pattern. Our approach decouples the pattern specification from pattern validation.

Consequently, our framework is robust to handle pattern evolution and variations among different Web pages by updating

the graph grammar without changing source codes.

Instead of designing a graph grammar from scratch, we provide an interactive process for users to design a graph grammar

visually and intuitively. Grammar induction [7,8] is an automatic process of generating a grammar from given example graphs,

saving the effort of manually designing the grammar. Our framework includes a novel grammar induction engine that converts

a graph to a set of strings based on spatial properties and accordingly searches for repetative strings instead of 2D structures.

5. Graph generation

This section presents the graph generation process that converts a concrete Web page to a spatial graph.

5.1. Node generation

A spatial graph includes three types of nodes, i.e. image, text and link. The contents enclosed in the <img> or <a> tags are

recognized as an image node or a link one, respectively. However, it is challenging to identify a text node since one complete sen-

tence may be separated by several HTML tags. For example, formatting and styling tags, such as <b>, <br>, <font>, <span>, can

divide a sentence into several pieces. During the graph generation process, all of those formatting and styling tags are removed

and adjacent contents are consolidated as one single text node. The consolidation reduces the number of nodes in the spatial

graph and thus speeds up the parsing process. In addition to the above three nodes, we also introduce container nodes, which are

derived from structural HTML elements (such as <Table> or <Div>) and indicate regions within a Web page. A container node

does not store real content. Instead, it is used to generate edges in the next step.
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Fig. 5. Hash function determining relationships between an object size and threshold value.

Fig. 6. Recall and precision of distance calculation approaches.
5.2. Edge generation

In a two dimensional space, an information object can have arbitrary spatial relations with adjacent nodes. Exhaustive graph

parsing is time consuming. According to Mayer [34], using multimedia and putting pictures and explaining text together facilitate

better learning for viewers. The HCI principle also dictates that related contents are placed in proximity [45]. Our approach uses

distance to calculate whether two adjacent nodes are related or not. In a spatial graph, two closely related nodes are connected

with an edge. We only parse the objects that are connected and thus reduce the search space to speed up the parsing process.

Each information object occupies a 2D space, so the distance cannot be directly calculated between two central points due to

the object size. In our approach, we extend the size of object a to a certain degree. If at least two corners of object b fall in the

extended rectangle of object a, objects a and b are closely related.

It is challenging to determine the threshold of extending an object. We have exploited three ways to determine the best value,

i.e., an absolute value, a linear formula based on the size, and a hash function between the size of an object and its threshold (See

Fig. 5). Fig. 6 presents the evaluation result of comparing the above three approaches on four Web sites (i.e., ubid.com, target.com,

shopnbc.com and powells.com), and the hash function produces the best result.

In addition to the distance, the hierarchical DOM structure also provides hints to the relation between two objects. In general,

closely related objects are placed in the same region, i.e., a container. According to the HTML DOM structure, we define a con-

tainment tree that specifies hierarchical relations among containers and information objects. For example, if an HTML element

<p> (corresponding to a text object t) is enclosed in an HTML element <table> (corresponding to a container c), then the con-

tainer c has a parent–child relation with the text object t in the containment tree. Since CCS style sheets or script languages could

change the position of an information object that is completely different from the definition in the DOM structure, we adjust the

containment tree based on the actual rendering. More specifically, we traverse every object in the containment tree: if an object
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Fig. 7. Different combinations of containers.
is completely contained in its parent container, we keep the current containment relation. Otherwise, the parent of this object

becomes the smallest container that completely contains it.

Based on the containment tree, if information object a has a close relation with information object b, a must have one of the

following containment relations with b:

• As presented in Fig. 7 (a), a and b are in the same container; or

• As presented in Fig. 7 (b), the container of object a is the direct parent of the container of object b; or

• As presented in Fig. 7 (c), the container of object a is the sibling of the container of object b.

5.3. Optimization

The optimization step removes useless information in a spatial graph. For example, some Web designers place a small icon

(such as the icon of a truck to indicate shipping) between a product image and product description. This design makes it slightly

different from other instances of the same pattern, in which the product image is directly adjacent to the product description.

We can eliminate this deviation by removing the small icon that does not really contribute to the real content. We have manually

evaluated 50 Web sites, and observed that small elements (such as icons) are in general not important to real contents. Based on

the observation, we have summarized two heuristic rules to remove small objects:

• Remove a text or link node, whose size includes less than 200 square pixels;

• Remove an image node, whose size includes less than 1400 square pixels.

A Web page is generally divided into 5 regions: top, bottom, left, right and center [27]. Menus and advertisements are in

general placed in the border areas. Removing menus and advertisements can reduce the size of a spatial graph without losing

useful information, since they are irrelevant to data extraction. Instead of removing individual information objects, our approach

searches for a container, which is at least 200 pixels in width and is at least overlapping with 60% of a border area. If such

a container is found, all of the information objects within this container are removed. Finally, any image that occurs more than

twice is removed from the spatial graph. These repetitive images are typically buttons, icons or styling images used for formatting

and layout without holding real contents.

6. Graph grammar based pattern definition

Based on spatial graphs, Web patterns are formally defined through graph grammars.

6.1. Spatial graph grammar formalism

Graph grammars with their well-established theoretical background can be used as a natural and powerful syntax-definition

formalism [42] for visual languages, which model structures and concepts in a 2-dimensional fashion [15]. The parsing algorithm

based on a graph grammar can be used to check the syntactical correctness and to interpret the language’s semantics.

Different from other graph grammar formalisms, the Spatial Graph Grammar (SGG) [25] introduces spatial notions to the

abstract syntax. In SGG, nodes and edges together with spatial relations construct the pre-condition of a production application.

The direct representation of spatial information in the abstract syntax makes productions easy to understand since grammar

designers often design rules with similar appearances as the represented graphs. Allowing designers to specify design knowl-

edge in both structural and spatial properties simultaneously, the spatial graph grammar is ideal for specifying Web patterns. For

example, the SGG production in Fig. 8a models the composition of information object product from both structural and spatial

properties. More specifically, a product information object is made of three information objects, i.e. link, image and text. Fur-

thermore, the link is placed above the image, which is further above the text. SGG also supports syntax-directed computations

through action code. An action code is associated with a production, and is executed when the production is applied.

Applying a production to a spatial graph, usually called a host graph, is referred to as a graph transformation, which can

be classified as an L-application (in a forward direction) or R-application (in a reverse direction). A redex is a sub-graph in the

host graph which is isomorphic to the right graph in an R-application or to the left graph in an L-application. A production’s

L-application to a host graph is to find in the host graph a redex of the left graph of the production and replace the redex with the

right graph. The language, defined as all possible graphs that have only terminal objects, can be derived through L-applications
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Fig. 8. The spatial graph grammar formalism.
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Fig. 9. The graph grammar for pattern 2.
(i.e., a generating process) from an initial graph. On the other hand, an R-application is the reverse replacement (i.e., from the

right graph to the left graph) used to parse a graph. In this paper, R-applications (i.e. a parsing process) are used to recognize

instances of a Web pattern. For example, Fig. 8b shows a spatial graph. The redex that matches the right graph in Fig. 8a is

highlighted in the dashed rectangle. After an R-application, we can recognize a product object and the new host graph is updated

in Fig. 8c.

6.2. Pattern specification and validation

Fig. 9 presents the spatial graph grammar for Pattern 2 (See Fig. 2). More specifically, Productions P1 to P3 specify the varia-

tions among instances of Pattern 2. P1 specifies that a product is made up of a title (i.e. a link object), a brief description (i.e. a text

object), a product picture (i.e. an image object) and other descriptions (i.e. a text object). P2/P3 specifies that a product includes

a title, a product picture and other descriptions. All those objects are displayed vertically top down. In P2, a title is placed above

an image and vice versa in P3. P4 is a recursive production that is used to recognize an arbitrary number of lines of product

description.

Based on the defined graph grammar, the SGG parser takes a spatial graph as input and recognizes in the spatial graph all

substructures that are consistent with the defined graph grammar. Each graph transformation reveals a local composition. For

example, the application of Production P1 in Fig. 9 indicates that a composite object product consists of four information objects,

i.e. image, link and two text objects. A sequence of graph transformations, i.e., the parsing process, assembles local compositions

into a global hierarchical structure. For example, Fig. 10a presents a spatial graph, which includes instances of Pattern 2 illustrated

in Fig. 2. Applying the graph grammar in Fig. 9 to the spatial graph in Fig. 10a can recognize instances of Pattern 2 as presented

in Fig. 10b.
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Fig. 10. Recognition of product information from a spatial graph.
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Text Link
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Fig. 11. A spatial graph.
7. Grammar induction

Instead of writing a graph grammar from scratch, our framework includes a novel grammar induction engine for automating

the grammar design and construction. The grammar induction algorithm uses spatial information to sequence a 2D graph as a

1D string and accordingly converts the problem of searching for 2D structures as searching for 1D strings, and thus reduces the

complexity significantly. More specifically, based on spatial properties, we converted a graph to a string, which is formalized

through regular expressions. Repetitive structures are searched through regular expressions. Finally, the most popular regular

expression is converted to a graph grammar based on the hierarchical structure within the regular expression.

7.1. A grammar induction engine

Our grammar induction algorithm has two features distinct from the previous approaches. First, to our knowledge, none of

existing grammar induction engines considers spatial properties of a graph in the induction process. However, spatial informa-

tion may play an important role in real applications. The layout in which a line of texts is displayed above an image can have

a different meaning from the layout which places an image above a line of texts. Therefore, our approach considers the spatial

information in the induction process. In our approach, two graphs are identical only if they have both the same structure (i.e.,

connections among nodes) and layout.

Second, traditional node replacements in the induction process cannot keep the spatial relations among terminal nodes. For

example, Fig. 11 shows a spatial graph, in which each label near an edge indicates the spatial relation between the correspond-

ing pair of nodes. If the image and text nodes are induced to a non-terminal node P1, the spatial relation between P1 and the

remaining node Link becomes undefined due to the irregular shape of P1. Our approach starts the induction from a single node

and gradually extends it to more complex graphs. During the extension, we search for repetitive structures and induce them as

productions. The extension based approach preserves spatial relations among terminal objects during the induction process.

Searching repetitive structures in a graph is an NP-Complete problem due to cycles. Our approach sequences terminal objects

based on left–right and top–bottom relations. Such a sequence allows us to search for structures in certain directions to avoid

cycles. Our induction approach is presented in Fig. 12 and proceeds in four steps, i.e., generating a unique string for each node,

summarizing Java regular expressions, expanding strings and graph grammar induction. The four steps are further explained

with detailed examples in the following subsections.
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1.    A unique string is generated for each node in the graph G. 

2.    Summarize each string as a java regular expression

3.   Extend each node in G to the right and to the bottom. Each produced subgraph is 

specified through a string. 

4.   Find the top 20 common java regular expressions.

5.   for (i=1; i<MaxLevel;i++) 

6.   { extend the top 20 java regular expressions;

7. find the top 20 java regular expressions;

8.   }

9.   Among top 20 java regular expressions, search for the regular expression that 

covers the most area. 

10. Convert the regular expression to a graph grammar  

Fig. 12. Grammar induction algorithm.
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Fig. 13. A sample spatial graph.
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Fig. 14. Strings of image1 and text2.
7.1.1. Step 1 - Create a string for each node

Our approach converts a graph to a string, which consequently translates a graph search problem to a string search problem.

Therefore, the first step is to convert each node in a graph to a unique string. During the conversion, we consider three types of

spatial relations, i.e., Bottom, Right and Containment. More specifically, given node a, its corresponding string includes two parts,

separated by the symbol ∼. The first part presents the type and ID of node a, and the second part has three sections, separated

by a semicolon. The first section specifies the nodes (including the node type and ID) that are connected and located to the right

of node a, the second section contains nodes which are below, and the last section defines nodes that are contained by node a.

The exclusion of spatial relations left and top avoids cycles in the following search. For example, Fig. 13 shows a spatial graph,

and Fig. 14 presents the generated strings for nodes Image1 and Text2, respectively. In the above example, abbreviations of I, T, L

represent Image, Text and Link, respectively; symbol N means that there is no node in that section; and symbol # indicates the

end of a string.

7.1.2. Step 2 - Summarize Java regular expressions

We abstract the string of every node as a Java regular expression and summarize a list of unique regular expressions. For

example, the string of node Image1 in Fig. 14a is abstracted as the following regular expression.

{\{I\d{4} ∼ (T\d{4}\, ){1}?(T\d{4}\, ){1}?[ˆ ; ]∗; (L\d\{4}\, ){1}?[ˆ ; ]∗; [ˆ ; ]∗#\}



A. Roudaki et al. / Information Sciences 328 (2016) 528–545 539
A regular expression keeps the node type, but it removes the detailed ID. Each detailed ID is represented with a general

format that includes 4 digit numbers. For example, node Image1 is abstracted as I\d{4} that indicates an image node with four

digits as its ID. The above regular expression precisely defines nodes that are connected to Image1 with certain spatial relations.

For example, (T\d{4}\,){1} in the above regular expression indicates that there is one text node locating right to Image1. [^;]∗ is

used as a wild card that allows variations when searching for an instance of this regular expression. Graphs that have the same

spatial and structural properties are abstracted to the same regular expression. For example, any subgraph, which has an Image

node in the top-left corner with at least two adjacent Text nodes at the right side and at least one adjacent Link on the bottom,

is considered an instance of the above regular expression. Given the example in Fig. 13, we can summarize the following regular

expressions:

{\{I\d{4} ∼ (T\d{4}\, ){1}?(T\d{4}\, ){1}?[ˆ ; ]∗; (L\d\{4}\, ){1}?[ˆ ; ]∗; [ˆ ; ]∗#\}

{\{T\d{4} ∼ [ˆ ; ]∗; (T\d{4}\, ){1}?[ˆ ; ]∗; [ˆ ; ]∗#\}

{\{L\d{4} ∼ (T\d{4}\, ){1}?[ˆ ; ]∗; [ˆ ; ]∗; [ˆ ; ]∗#\}
In the following description, Set_RegularExpression is used to indicate all regular expressions generated in Step 2.

7.1.3. Step 3 - Expand strings

To improve the search efficiency, we divide a graph into a group of subgraphs by gradually extending the strings generated

in the first step. More specifically, a string in Step 1 indicates a minimal subgraph, which only includes the node in the top-left

corner (e.g., Image1 in Fig. 14.a) and its adjacent nodes. The node in the left-top corner is referred to as the origin of the subgraph.

We can extend this minimal subgraph to the right and to the bottom by replacing each adjacent node with a string that takes the

adjacent node as the origin. For example, the string of node Image1 in Fig. 14 a can be extended to the following string:

{I0001 ∼ {T0002 ∼ N; T0003, ; N#}, {T0003 ∼ N; T0005, ; N#}, ; {L0004 ∼ T0005, ; N; N#}; N#}
In the above, node T0002 is extended to the subgraph of {T0002∼N;T0003,;N#}. The first round of extension increases the

maximum distance between the origin (e.g., Image1 in the above example) and any other node in the extended subgraph to 2. The

extension continues until the node in the bottom-right corner is reached or the maximum distance reaches 10. This extension is

applied to every graph string generated in Step 1. Therefore, given a graph of n nodes, the third step will generate n subgraphs.

In other words, the original graph is divided into n subgraphs and the search of repetitive structures is performed within each

subgraph.

7.1.4. Step 4 - Graph grammar induction

Based on the regular expressions produced in Step 2 and n subgraphs generated in Step 3, we search for the instances of each

regular expression in those subgraphs, and select the top 20 regular expressions, recorded in Candidates_GG, which have the

most instances in n subgraphs. In the first iteration step, each selected regular expression only specifies a minimal structure,

which only includes the origin and its neighbors. We take those top 20 regular expressions as the initial set of repetitive struc-

tures, and gradually expand them in the following iterations. In one iteration of expansion, except the origin, a node with type

x in a regular expression is replaced with every eligible regular expression in Set_RegularExpression, which has a node with

type x as the origin. Since several regular expressions may have the same node type in the top-left corner, expanding one regular

expression will produce multiple new expanded regular expressions. Furthermore, the expansion may replace only one node or

multiple nodes simultaneously. For example, considering the example in Fig. 13, expanding the following regular expression can

produce a total of 7 new expanded regular expressions (See Appendix A).

{\{I\d{4} ∼ (T\d{4}\, ){1}?(T\d{4}\, ){1}?[ˆ ; ]∗; (L\d\{4}\, ){1}?[ˆ ; ]∗; [ˆ ; ]∗#\}
For example, the first expanded regular expression replaces node T\d{4} with the regular expression

{T\d{4}∼[^;]∗;(T\d{4}\,){1}?[^;]∗;[^;]∗#\}. Each expanded regular expression is added to Candidates_GG. Number 10000 in-

dicates the first level of expansion. In the first 3 expanded regular expressions, only one node is expanded; in the remaining four

expanded regular expressions, multiple nodes are expanded simultaneously. In the above example, only one regular expression

starts with a Text Node. If there is more than one, we need to iterate each eligible expression for the expansion. After the

expansion, we calculate the number of instances for each regular expression in Candidates_GG and again select the top 20

regular expressions. Furthermore, each selected regular expression must have at least 4 instances. Only those selected regular

expressions are kept in Candidates_GG. Then, we continue the second round of expansion and calculation. The expansion

is performed for 10 iterations. After all rounds of expansion, we finally select the top 20 regular expressions. Based on the

observation that important information occupies the main area in a Web page, we calculate the total area that is covered by the

instances of each regular expression, and choose the regular expression that covers the largest area as the final induced graph

grammar.

A regular expression can consist of multiple levels. Starting from the deepest level (i.e., level 10), we extract productions

in a bottom–up fashion. For example, given the following regular expression, we can summarize a graph grammar as shown
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Fig. 15. An induced graph grammar.

Fig. 16. A sample-based grammar editor.
in Fig. 15.

{\{I\d{4} ∼ (10000\{T\d{4} ∼ [ˆ ; ]∗; (T\d{4}\, ){1}?[ˆ ; ]∗; [ˆ ; ]∗#\}10000\, ){1}?(T\d{4}\, ){1}?
[ˆ ; ]∗; (L\d{4}\, ){1}?[ˆ ; ]∗; [ˆ ; ]∗#\}

The first production is extracted from the regular expression with the deepest level, i.e., 10000\{T\d{4} ∼[^;]∗; (T\d{4}\,)
{1}?[^;]∗;[^;]∗#\}10000. The second production (P2) is summarized based on P1. Since P1 is extended from a single text node,

we also summarize P3 that includes a terminal node instead of substructure of P1.

7.2. Interactive grammar design

Due to the lack of domain knowledge, a grammar induction algorithm in general assigns recognized substructures with

program-generated names, which make it hard to understand the induced grammar. In order to complement the automatic

grammar induction, we develop a sample-based grammar editor, in which grammar designers directly manipulate the screen-

shot of a Web page to design or elaborate a graph grammar. The grammar editor looks like a regular Web browser (See Fig. 16).

In the editor, each recognized information object is highlighted in a rectangle. When a user clicks an information object, edges

that are connected with the selected object are displayed accordingly. Based on the editor, a grammar designer can construct a

production by visually selecting related information objects to define the right graph. The sample-based grammar editor bridges

the gap between the concrete layout of a Web page and its abstraction (i.e., a spatial graph), since the editor visualizes the spatial

graph in a concrete context. The visualization facilitates grammar designers to recognize the abstract structure underlying the

layout of a Web page, which benefits the designers to understand and elaborate an induced graph grammar.

8. Experiment

The method of Mining Data Records (i.e., MDR) [32] was used as a benchmark to compare with our approach since MDR is

the only executable open source that we find available online. In the evaluation, we chose to extract product-related information
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Table 3

Experimental results.

Domain name # of structured records MDR Our approach (Manual) Our approach (Auto)

Correct Found Correct Found Correct Found

1 shopping.yahoo.com 15 0 0 14 14 14 14

2 scistore.cambridgesoft.com 13 13 13 13 14 13 15

3 shop.lycos.com 18 0 0 18 18 18 18

4 barnesandnoble.com 48 0 0 48 48 48 48

5 borders.com 27 27 32 28 29 28 30

6 circuitcity.com 5 5 5 5 7 5 7

7 compusa.com 18 0 0 18 21 18 21

8 drugstore.com 15 15 15 13 14 13 14

9 ebay.com 20 20 20 20 20 20 20

10 etoys.com 32 0 0 32 32 32 32

11 kidsfootlocker.com 29 29 29 29 29 29 29

12 kodak.com 20 0 0 20 20 20 20

13 newegg.com 20 0 0 20 26 20 26

14 nothingbutsoftware.com 24 24 24 24 24 24 24

15 overstock.com 18 18 18 18 18 18 18

16 powells.com 50 50 50 50 51 50 51

17 softwareoutlet.com 14 0 0 14 15 14 16

18 ubid.com 8 0 0 8 9 8 9

19 amazon.com 7 0 0 7 8 7 8

20 shopping.hp.com 5 5 5 5 5 5 5

21 qualityinks.com 24 24 24 24 26 24 26

Total 430 230 235 423 443 423 451

Recall/Precision 53.5%/97.9% 99.5%/95.5% 99.5%/95.0%

F1-Score 69.19% 97.49% 97.16%
from online ecommerce Web sites. It is worth mentioning that our approach is domain-independent and can be applied to

different domains as long as those Web pages are designed using the same pattern.

8.1. Setup

Experiment web pages: Liu et al. [32] evaluated MDR on 46 Web sites. From those 46 Web sites, we eliminate the Web sites

that are not accessible and not in the category of ecommerce, and finally select 21 Web sites as the test set.

Measurement: We measured the performance with the standard metrics:

• recall = Ecorrect
Ntotal

;
• precision = Ecorrect

Etotal
;

where Ntotal is the total number of data records contained in a Web page; Ecorrect indicates the number of correctly extracted

data records; and Etotal denotes the total number of data records extracted from a Web page. We also calculated the F1-Score,

which is the harmonic mean of precision and recall and is defined as 2×recall×precision
recall+precision

. The F1-Score has been commonly used

as a metric to evaluate the overall performance in many approaches [13,29]. MDR is a general process that can recognize any

repetitive structures within a Web page. Those recognized records may belong to different categories. Since those product-

unrelated records may affect the recall and precision of MDR, we only calculate the number of product records recognized by

MDR in order to compare two approaches fairly. In other words, structured records that are extracted by MDR but not related to

products are not counted toward Ecorrect and Etotal. In addition, we evaluate the processing time and the complexity of the spatial

graph in our approach. To evaluate the quality of grammar induction, we further compare the performance between a manually

designed grammar and an automatically induced one.

8.2. Evaluation

8.2.1. Precision/recall/F1-score

The results are presented in Table 3. The recall of our approach is 99.5% for both manual and automated grammar, compared

to 53.5% with MDR. The high recall rate in our approach indicates that the visual analysis is powerful in recognizing repetitive

structures. The precision of our approach is 95.5% for the manually designed grammar and 95.0% for the automated grammar,

both close to 97.9% with MDR. The falsely recognized records in our approach are mainly caused by noises. For example, if an

advertisement is placed in the central area and its layout is similar to pattern 2 this advertisement may be recognized as a product

record. In order to improve the precision, it is critical to improve the graph generation process by removing potential noises. In

summary, our approach has a high F1-Score of 97.49% for the manually designed grammar and 97.16% for the automatically

induced grammar, compared with 69.19% with MDR.
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Table 4

The complexity of spatial graphs and processing time.

Size Processing time (Milliseconds)

URL HTML tags Nodes Reduction percent Graph generation Pattern validation

1 shopping.yahoo.com 1065 504 47.3% 1063 373

2 scistore.cambridgesoft.com 1213 488 40.2% 1301 368

3 shop.lycos.com 522 233 44.6% 210 139

4 barnesandnoble.com 2328 851 36.6% 2702 1899

5 borders.com 812 342 42.1% 384 297

6 circuitcity.com 1664 557 33.5% 1094 198

7 compusa.com 1509 473 31.3% 752 228

8 drugstore.com 690 279 40.4% 248 507

9 ebay.com 1647 875 53.1% 2714 2112

10 etoys.com 677 234 34.6% 176 140

11 kidsfootlocker.com 608 276 45.4% 174 68

12 kodak.com 679 301 44.3% 238 85

13 newegg.com 1724 861 49.9% 1200 6703

14 nothingbutsoftware.com 1048 148 14.1% 305 33

15 overstock.com 1416 889 62.8% 1841 2038

16 powells.com 2531 951 37.6% 1488 14860

17 softwareoutlet.com 1117 247 22.1% 260 137

18 ubid.com 360 111 30.8% 100 22

19 amazon.com 1208 552 45.7% 530 511

20 shopping.hp.com 1046 392 37.5% 257 239

21 qualityinks.com 513 237 46.2% 129 144

Average 1160.8 466.7 40% 817.4 1481
8.2.2. The complexity of spatial graphs

The graph generation process simplifies the original Web page by consolidating information pieces and removing noises.

Table 4 compares the size of a Web page to that of its corresponding spatial graph. On average, the size of a spatial graph is only

40% of the corresponding Web page.

8.2.3. Processing time

We evaluated the MDR and our approach on a desktop with a Core 2 Duo CPU 2.26 GHz and 4 GB RAM, running Windows 7

Professional. Table 4 presents the processing time for the graph generation and pattern validation. The average graph generation

time for an average Web page with 1160 HTML tags is less than 1 s, while the pattern validation is less than 1.5 s on average. The

processing time does not include the time used for downloading and rendering the page since it depends on the network speed.

We were not able to record the MDR processing time since we can only access to the executable version of MDR. MDR has a user

interface, in which a user has to click multiple buttons in a series, and it will then generate a file with the data in the end. Because

of the user interaction, it is hard to precisely compare MDR in terms of the processing time with our approach in which we are

measuring the processing time in the code.

8.3. Discussion

Graph Generation is one of the most important components in our approach. As shown in Table 4, the generated spatial graphs

reduce the complexity of the original Web page by 60%. The precision can be further improved by introducing computer vision

techniques to the graph generation process, such as analyzing the background and foreground colors or styles. In the evaluation,

some product records are not recognized by our approach. For example, in Fig. 17, text objects 1 and 2 are far away and the

distance exceeds the defined threshold. Therefore, text objects 1 and 2 are not connected. Consequently, they are not recognized

correctly by our approach. This problem could be solved by analyzing the background color of information objects. The same

group of information objects often uses the same background color. If two objects have the same background color within the

same container and no other object between them, those two objects are likely to be closely related.

The complex usage of div/table may also reduce the recall. Some Web page designers use tables or divisions for the layout

purpose. Therefore, information object of the same product may be organized in different containers, making those objects not

closely related in the graph generation process. If we also define some containment relations based on the background color

of information objects, they may be connected in the spatial graph. We also notice it is not sufficient to solely depend on the

background color. For example, though text objects 1 and 3 have the same background color, they may not be related if there is

a separation line between them. Therefore, integrating computer vision techniques (such as color and line detection) with the

distance and DOM structure analysis may improve the quality of a spatial graph.

The evaluation results show that our approach is powerful in recognizing structured records. However, it may falsely recognize

some product-unrelated records, such as advertisements that are presented similarly to product records. Though the graph

generation process has removed advertisements placed in the border areas, the advertisements placed in the central area are
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Fig. 17. Long distance between text elements.

Table 5

The precision and recall rates of various approaches.

Approach Our approach ViNTs [57] [35] [10] DEPTA [58] ViPER [46] FiVaTech [36] [2]

Precision 95.5% 98.7% 96.2% 98.9% 98.18% 98.6% 97.4% 97.39%

Recall 99.5% 98.7% 93.1% 97.6% 99.68% 98.0% 97.0% 98.55%

F1-score 97.5% 98.7% 94.6% 98.2% 98.9% 98.3% 97.2% 97.9%
hard to remove. In the future, we will consider adapting content analysis techniques [20,27] to our approach. Based on the

content analysis, we can distinguish main contents from other sections (e.g. advertisements or menu) in a Web page and limit

the data extraction in the main area.

As mobile devices become increasing popular, Web browsing has been extended from desktops to mobile devices. Due to the

hardware difference, such as screen size and computing power, the layout of mobile Web pages is different from that of desktop

Web pages, which makes it challenging to design a generic cross-device and cross-domain solution. In our approach, grammar

induction automatically discovers a pattern underlying sample Web pages (such as pages from the same Web site). Then, data

extraction is conducted based on the derived graph grammar. Since each pattern is uniquely defined through a graph grammar

and grammar definition process is automatic, our approach is device- and domain-independent.

Similar to our approach, a majority of existing approaches use MDR as a benchmark to compare with (See Table 5) since

MDR provides the open source that is easy to use. Unfortunately, without access to the source or executable code of other

related approaches, it is infeasible to make a direct comparison. In order to compare our approach with related work, we have

extracted the precision, recall and F1-score of related approaches and presented them in Table 5. The comparison indicates a

good performance of our approach, in particular the recall.

9. Conclusion

Based on graph grammars, this paper presents a novel solution for specifying Web patterns and validating the instances of

a Web pattern (i.e., data extraction) from different websites without the need of training and adjustment. Our approach utilizes

both the visual features and the HTML DOM structure to abstract a Web page as a spatial graph. The spatial graph significantly

simplifies the complexity of the original Web page by consolidating information pieces together and removing noises, and thus

improves the efficiency of the pattern specification and validation. On top of spatial graphs, a Web pattern is defined as a graph

grammar and its instances are recognized through a graph parsing process. To minimize the effort of designing a graph grammar,

our approach is featured with a grammar induction engine which automatically summarizes a Web pattern from sample pages.

Distinct from existing grammar induction algorithms, our approach takes advantage of spatial information and converts the 2D

graph induction to the 1D string search.

We have implemented a prototype and tested it on 21 Web sites in the domain of E-commerce. The evaluation results are

promising. Our approach has a high F1-Score (97.49% for a manually designed grammar and 97.16% for an automated one),

compared to 69.19% of the MDR approach. The evaluation indicates that our approach produces a good performance in both

precision and recall. The main advantage of our approach lies in its ability to convert complex HTML DOM structures to simple

spatial graphs (i.e., reducing the complexity of the original page by 60% on average) and to automatically extract a Web pattern

as a graph grammar from sample pages.

As the future work, we will add and identify more spatial relations between information objects, and optimize the graph

generation algorithm. These optimizations increase the quality of generated spatial graphs, which can affect both the precision

and recall. We also plan to use computer vision techniques to recognize boundaries between different regions and to use content

analysis techniques to analyze actual contents.
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Appendix A

The original expression:

{\{I\d{4} ∼ (T\d{4}\, ){1}?(T\d{4}\, ){1}?[ˆ ; ]∗; (L\d\{4}\, ){1}?[ˆ ; ]∗; [ˆ ; ]∗#\}
Expanded regular expressions:

References

[1] H. Ahmadi, J. Kong, Efficient web browsing on small screens, in: Proceedings of the Working Conference on Advanced Visual interfaces, 2008, pp. 23–30.
[2] H. Ahmadi, J. Kong, User-Centric Adaptation of Web Information for Small Screens, J. Visual Lang. Comput. vol. 23 (1) (2012) 13–28.

[3] M. Alvarez, A. Pan, J. Raposo, F. Bellas, F. Cacheda, Finding and extracting data records from Web pages, J. Signal Process. Syst. 59 (2010) 123–137.
[4] M.S. Amin, H. Jamil, An efficient Web-based wrapper and annotator for tabular data, Int. J. Softw. Eng. Knowl. Eng. vol. 20 (2) (2010) 215–231.

[5] N. Anderson, J. Hong, Visually extracting data records from the deep Web, in: Proc. WWW’13, 2013, pp. 1233–1238.
[6] A. Arasu, H. Garcia-Molina, Extracting structured data from Web pages, in: Proceedings of the 2003 ACM SIGMOD International Conference on Management

of Data, 2003, pp. 337–348.

[7] K. Ates, J. Kukluk, L. Holder, D. Cook, K. Zhang, Graph grammar induction on structural data for visual programming, in: Proceedings of the 18th IEEE
International Conference on Tools with Artificial Intelligence, 2006, pp. 232–242.

[8] K. Ates, K. Zhang, Constructing VEGGIE: machine learning for context-sensitive graph grammars, in: Proceedings of the 19th IEEE International Conference
on Tools with Artificial intelligence, vol. 02, 2007, pp. 456–463.

[9] L.D. Bing, W. Lam, Y. Gu, Towards a unified solution data record region detection and segmentation, in: Proc. CIKM’11, 2011, pp. 1265–1274.
[10] L.D. Bing, W. Lam, T.L. Wong, Robust detection of semi-structured Web records using a DOM structure-knowledge-driven model, ACM Trans. Web 7 (4)

(2013) Article ID 21.

[11] D. Cai, S. Yu, J. Wen, M.W., Extracting content structure for web pages based on visual representation, in: Proc. Asia Pacific Web, 2003, pp. 406–417.
[12] T.C. Chang, S.S. Xu, Object-image-based quality-on-demand energy saving schemes for OLED displays, Electron. Lett. vol. 50 (22) (2014) 1595–1597.

[13] J. Chen, K. Xiao, Perception-oriented online news extraction, in: Proceedings of the 8th ACM/IEEE-CS Joint Conference on Digital Libraries, 2008, pp. 363–
366.

[14] S. Chuang, J.Y. Hsu, Tree-structured template generation for Web pages, in: Proceedings of the 2004 IEEE/WIC/ACM International Conference on Web
Intelligence, 2004, pp. 327–333.

[15] P.T. Cox, T. Smedley, Building environments for visual programming of robots by demonstration, J. Visual Lang. Comput. vol. 11 (5) (2000) 549–571.

[16] V. Crescenzi, G. Mecca, P. Merialdo, RoadRunner: towards automatic data extraction from large Web sites, in: Proceedings of the 27th International Confer-
ence on Very Large Data Bases, 2001, pp. 109–118.

[17] N. Dalvi, R. Kumar, M. Soliman, Automatic wrappers for large scale Web extraction, in: Proceedings of the VLDB Endowment, 4, 2011, pp. 219–230.
[18] O. Ermelinda, M. Ruffolo, SILA: A spatial instance learning approach for deep web pages, in: Proc. CIKM’11, 2011, pp. 2329–2332.

[19] D. Freitag, N. Kushmerick, Boosted wrapper induction, in: Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Con-
ference on Innovative Applications of Artificial Intelligence, 2000, pp. 577–583.

[20] E. Fersini, E. Messina, F. Archetti, Enhancing web page classification through image-block importance analysis, Inf. Process. Manage. 44 (4) (2008) 1431–1447

(Jul. 2008).
[21] J. Geng, J. Yang, Automatic extraction and integration of bibliographic information on the Web, IDEAS’04 (2004) 193–204.

[22] C. Hsu, M. Dung, Generating finite-state transducers for semi-structured data extraction from the Web, Inf. Syst. 23 (9) (1998) 521–538 (Dec. 1998).
[23] F. Hu, T. Ruan, Z.Q. Shao, J. Ding, Automatic Web information extraction based on rules, Proc. WISE 2011 (2011) 265–272.

[24] P.M. Joshi, S. Liu, Web document text and images extraction using DOM analysis and natural language processing, in: Proceedings of the 9th ACM Symposium
on Document Engineering, 2009, pp. 218–221.

[25] J. Kong, K. Zhang, X. Zeng, Spatial graph grammars for graphical user interfaces, ACM Trans. Comput. Human Interact. 13 (2) (2006) 268–307 (Jun. 2006).

[26] J. Kong, O. Barkol, R. Bergman, A. Pnueli, S. Schein, C.Y. Zhao, K. Zhang, Web interface interpretation using graph grammars, IEEE Trans. SMC – Part C 42 (4)
(2012) 590–602.

[27] M. Kovacevic, M. Diligenti, M. Gori, V. Milutinovic, Recognition of common areas in a Web page using visual information: a possible application in a page
classification, in: Proceedings of the 2002 IEEE International Conference on Data Mining, 2002, p. 250.

[28] N. Kushmerick, D. Weld, R. Doorenbos, Wrapper induction for information extraction, in: Proceedings of the Fifteenth International Joint Conference on
Artificial Intelligence, 1997, pp. 729–737.

http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0001
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0001
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0001
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0002
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0002
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0002
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0003
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0003
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0003
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0003
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0003
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0003
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0004
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0004
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0004
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0005
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0005
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0005
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0006
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0006
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0006
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0007
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0007
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0007
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0007
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0007
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0007
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0008
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0008
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0008
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0009
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0009
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0009
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0009
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0010
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0010
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0010
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0010
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0011
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0011
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0011
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0011
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0011
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0012
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0012
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0012
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0013
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0013
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0013
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0014
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0014
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0014
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0015
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0015
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0015
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0016
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0016
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0016
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0016
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0017
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0017
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0017
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0017
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0018
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0018
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0018
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0019
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0019
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0019
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0020
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0020
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0020
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0020
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0021
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0021
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0021
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0022
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0022
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0022
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0023
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0023
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0023
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0023
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0023
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0024
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0024
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0024
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0025
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0025
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0025
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0025
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0026
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0026
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0026
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0026
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0026
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0026
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0026
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0026
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0027
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0027
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0027
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0027
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0027
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0028
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0028
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0028
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0028


A. Roudaki et al. / Information Sciences 328 (2016) 528–545 545
[29] E.S. Laber, C.P. de Souza, I.V. Jabour, E.C. de Amorim, E.T. Cardoso, R.P. Rentería, L.C. Tinoco, C.D. Valentim, A fast and simple method for extracting relevant
content from news webpages, in: Proceeding of the 18th ACM Conference on Information and Knowledge Management, 2009, pp. 1685–1688.

[30] P. Ladyzynski, P. Grzegorzewski, Retrieving informative content from Web pages with conditional learning of support vector machines and semantic analysis,
in: Proc. ICAISC 2012, Part II, 2012, pp. 128–135.

[31] A.H. Laender, B.A. Ribeiro-Neto, A.S. da Silva, J.S. Teixeira, A brief survey of web data extraction tools, SIGMOD Rec. 31 (2) (2002) 84–93 (Jun. 2002).
[32] B. Liu, R. Grossman, Y. Zhai, Mining data records in Web pages, in: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, 2003, pp. 601–606.

[33] W. Liu, X. Meng, W. Meng, Vide: a vision-based approach for deep web data extraction, IEEE Trans. Knowl. Data Eng. 22 (3) (2010) 447–460.
[34] R.E. Mayer, Multimedia Learning, Cambridge University Press, New York, 2005.

[35] G.X. Miao, J. Tatemura, W.P. Hsiung, A. Sawires, L. Moser, Extracting data records from the Web using tag path clustering, in: Proc. WWW’2009, 2009,
pp. 981–990.

[36] K. Mohammed, C.H. Chang, FiVaTech: page-level web data extraction from template pages, IEEE Trans. Knowl. Data Eng. 22 (2) (2010) 249–263.
[37] I. Muslea, S. Minton, C. Knoblock, A hierarchical approach to wrapper induction, in: Proceedings of the Third Annual Conference on Autonomous Agents,

1999, pp. 190–197.
[38] I. Muslea, S. Minton, C.A. Knoblock, Hierarchical wrapper induction for semistructured information sources, Auton. Agents Multi-Agent Syst. 4 (1–2) (2001)

93–114 (Mar. 2001).

[39] A. Penev, R.K. Wong, Grouping hyperlinks for improved voice/mobile accessibility, in: Proceedings of the 2008 international cross-disciplinary conference
on Web accessibility, 2008, pp. 50–53.

[40] S. Raeymatkers, M. Bruynooghe, Sub node extraction with tree based wrappers, in: Proceedings of the European Conference on Artificial Intelligence, 2008,
pp. 137–141.

[41] D.C. Reis, P.B. Golgher, A.S. Silva, A.F. Laender, Automatic web news extraction using tree edit distance, in: Proceedings of the 13th International Conference
on World Wide Web, 2004, pp. 502–511.

[42] G. Rozenberg (Ed.), Handbook on Graph Grammars and Computing by Graph Transformation: Foundations, vol. 1, World Scientific, 1997.

[43] A. Roudaki, J. Kong, Graph grammar based Web data extraction, in: Proceedings of International Conference on Software Engineering and Knowledge
Engineering, 2011, pp. 373–378.

[44] S. Sarawagi, Automation in information extraction and data integration (tutorial), in: Proceedings of VLDB 2002, 2002 http://dblp.uni-trier.de/rec/bibtex/
conf/vldb/Sarawagi02.

[45] B. Shneiderman, C. Plaisant, Designing the User Interface: Strategies for Effective Human-Computer Interaction, Addison-Wesley Longman Publishing Co.,
Inc., 2009.

[46] K. Simon, G. Lausen, ViPER: augmenting automatic information extraction with visual perceptions, in: Proceedings of the 14th ACM International Conference

on Information and Knowledge Management, 2005, pp. 381–388.
[47] M. Skounakis, M. Craven, S. Ray, Hierarchical hidden Markov models for information extraction, in: Proceedings of the 18th International Joint Conference

on Artificial Intelligence, 2003, pp. 427–433.
[48] H.A. Sleiman, R. Corchuelo, A survey on region extractor from web documents, IEEE Trans. Knowl. Data Eng. 25 (9) (2012) 1960–1981.

[49] H.A. Sleiman, R. Corchuelo, TEX: an efficient and effective unsupervised Web information extractor, Knowl. Based Syst. 39 (2013) 109–123.
[50] R. Song, H. Liu, J. Wen, W. Ma, Learning block importance models for web pages, in: Proceedings of the 13th International Conference on World Wide Web,

2004, pp. 203–211.

[51] X.Y. Song, J. Liu, Y.B. Cao, C.Y. Lin, H.W. Hon, Automatic extraction of Web data records containing user-generated content, in: Proceedings of the 19th ACM
International Conference on Information and Knowledge Management, 2010, pp. 39–48.

[52] X.Y. Xiao, Q. Luo, D. Hong, H.B. Fu, X. Xie, W.Y. Ma, Browsing on small displays by transforming Web pages into hierarchically structured subpages, ACM
Trans. Web vol. 3 (1) (2009) Article ID 4.

[53] X. Yin, W.S. Lee, Using link analysis to improve layout on mobile devices, in: Proceedings of the 13th International Conference on World Wide Web, 2004,
pp. 338–344.

[54] X. Yin, W.S. Lee, Understanding the function of web elements for mobile content delivery using random walk models, in: Special Interest Tracks and Posters

of the 14th International Conference on World Wide Web, 2005, pp. 1150–1151.
[55] Y. You, G. Xu, J. Cao, Y.C. Zhang, G. Huang, Leveraging visual features and hierarchical dependencies for conference information extraction, in: Proc. APWeb,

LNCS 7808, 2013, pp. 404–416.
[56] Z. Zhang, B. He, K.C.-C. Chang, Understanding Web query interfaces: best-effort parsing with hidden syntax, in: Proc. 2004 ACM SIGMOD International

Conference on Management of Data, 2004, pp. 107–118.
[57] H. Zhao, W. Meng, Z. Wu, V. Raghavan, C. Yu, Fully automatic wrapper generation for search engines, in: Proceedings of the 14th International Conference

on World Wide Web, 2005, pp. 66–75.

[58] Y. Zhai, B. Liu, Web data extraction based on partial tree alignment, in: Proceedings of the 14th International Conference on World Wide Web, 2005, pp. 76–
85.

[59] Y. Zhai, B. Liu, Extracting Web data using instance-based learning, World Wide Web 10 (2) (2007) 113–132 (Jun. 2007).
[60] Q. Zhang, Y. Shi, X. Huang, L. Wu, Template-independent wrapper for web forums, in: Proceedings of the 32nd International ACM SIGIR Conference on

Research and Development in Information Retrieval, 2009, pp. 794–795.
[61] S. Zheng, R. Song, J. Wen, Template-independent news extraction based on visual consistency, in: Proceedings of the 22nd National Conference on Artificial

Intelligence, vol. 2, 2007, pp. 1507–1512.

http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0029
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0029
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0029
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0029
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0029
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0029
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0029
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0029
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0029
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0030
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0030
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0030
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0031
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0031
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0031
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0031
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0031
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0032
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0032
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0032
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0032
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0033
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0033
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0033
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0033
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0034
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0034
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0035
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0035
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0035
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0035
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0035
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0035
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0036
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0036
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0036
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0037
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0037
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0037
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0037
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0038
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0038
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0038
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0038
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0039
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0039
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0039
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0040
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0040
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0040
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0041
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0041
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0041
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0041
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0041
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0042
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0043
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0043
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0043
http://dblp.uni-trier.de/rec/bibtex/conf/vldb/Sarawagi02
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0045
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0045
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0045
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0046
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0046
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0046
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0047
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0047
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0047
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0047
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0048
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0048
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0048
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0049
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0049
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0049
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0050
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0050
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0050
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0050
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0050
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0051
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0051
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0051
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0051
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0051
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0051
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0052
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0052
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0052
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0052
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0052
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0052
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0052
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0053
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0053
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0053
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0054
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0054
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0054
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0055
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0055
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0055
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0055
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0055
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0055
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0056
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0056
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0056
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0056
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0057
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0057
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0057
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0057
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0057
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0057
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0058
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0058
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0058
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0059
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0059
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0059
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0060
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0060
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0060
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0060
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0060
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0061
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0061
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0061
http://refhub.elsevier.com/S0020-0255(15)00651-9/sbref0061

	Specification and discovery of web patterns: a graph grammar approach
	1 Introduction
	2 Related work
	3 Web patterns
	4 Approach overview
	4.1 Graph generation
	4.2 Grammar design and pattern validation

	5 Graph generation
	5.1 Node generation
	5.2 Edge generation
	5.3 Optimization

	6 Graph grammar based pattern definition
	6.1 Spatial graph grammar formalism
	6.2 Pattern specification and validation

	7 Grammar induction
	7.1 A grammar induction engine
	7.1.1 Step 1 - Create a string for each node
	7.1.2 Step 2 - Summarize Java regular expressions
	7.1.3 Step 3 - Expand strings
	7.1.4 Step 4 - Graph grammar induction

	7.2 Interactive grammar design

	8 Experiment
	8.1 Setup
	8.2 Evaluation
	 8.2.1. Precision/recall/F1-score
	 8.2.2. The complexity of spatial graphs
	 8.2.3. Processing time

	8.3 Discussion

	9 Conclusion
	 Appendix A
	 References


