
Constraint-based Graph Clustering through Node 
Sequencing and Partitioning 

Yu Qian1, Kang Zhang1, and Wei Lai2

1Department of Computer Science  
The University of Texas at Dallas, Richardson, TX 75083-0688, USA 

{yxq012100, kzhang}@utdallas.edu 
2School of Information Technology 

Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia 
wlai@it.swin.edu.au

 
 

Abstract. This paper proposes a two-step graph partitioning method to discover 
constrained clusters with an objective function that follows the well-known min-
max clustering principle. Compared with traditional approaches, the proposed 
method has several advantages. Firstly, the objective function not only follows 
the theoretical min-max principle but also reflects certain practical requirements. 
Secondly, a new constraint is introduced and solved to suit more application 
needs while unconstrained methods can only control the number of produced 
clusters. Thirdly, the proposed method is general and can be used to solve other 
practical constraints. The experimental studies on word grouping and result 
visualization show very encouraging results. 

 
 
1    Introduction 
As a widely recognized technique for data analysis, clustering aims at gathering closely 
related entities together in order to identify coherent groups, i.e., clusters. Clustering 
methods have proven to be very useful in many application areas including data 
mining, image processing, graph drawing, and distributed computing. This paper 
presents a novel graph theoretic partitioning approach to constrained clustering, 
analyzes and demonstrates the advantages of such an approach.  

For constrained clustering, grouping similar units into clusters has to satisfy some 
additional conditions. Such additional conditions come from two kinds of knowledge: 
background knowledge and user requirements. While there have been some works 
investigating the use of background knowledge in clustering process, little research, 
however, performs in-depth analysis on the role of user-inputs in the process of 
clustering. According to the role of user-input in the clustering process, clustering 
criteria can be classified into two categories: user-centric and data-centric. The former 
involves and solves practical constraints in clustering process while the latter meets 
only the application-independent requirements such as high cohesiveness, low 
coupling, less noise, and etc. A practical clustering method should be both user-centric 
and data-centric, e.g., in most clustering algorithms the number of the clusters to be 
discovered is a necessary user-input while the application-independent min-max 
clustering principle must hold: the similarity between two clusters is significantly less 
than the similarity within each cluster [3].  

The number of user-input constraints varies for different applications. In spatial 
data clustering, user-input can be minimized because there are naturally-defined 
potential clusters contained in the given data and finding these clusters is exactly the 

 



final purpose. In many other cases, however, finding natural clusters is far from the 
destination, which makes it not enough to meet only one constraint on the number of 
the clusters. Let us use a simple example in Fig. 1 to demonstrate the necessity of 
involving more constraints. 

 (a)                                          (b)                                      (c) 
Fig. 1. (a) A population-density map with 12 communities. (b) A 4-clustering of the 12 

communities. (c) A 4-clustering with a constraint on the distance between cluster centers. 
Fig. 1 (a) is a map that describes the population distribution in a city. The denser 

the color is the more crowded the people are. A builder is planning to build some 
supermarkets in this city. He wants to choose four profitable locations of the 
supermarkets according to this map. So he uses some clustering algorithms to discover 
the clusters of people in order to put his supermarkets at the centers of clusters. In Fig. 
1 (a), we can see that a correct and “good” data-centric clustering algorithm without 
any user-input would produce the twelve communities in this city as twelve clusters. 
Such a clustering result, unfortunately, is of little use because the builder can afford 
only four supermarkets. Fig. 1 (b) illustrates a feasible result after accepting the 
constraint on the number of clusters: the four stars indicate the best locations of the 
four supermarkets. The result shown in Fig. 1 (b), however, cannot satisfy the builder 
either. The builder needs a bigger distance between two supermarkets so that they can 
cover more area. After accepting one more constraint about the minimal allowable 
distance between two supermarkets, Fig. 1 (c) shows a desirable result. Fig. 1 has 
revealed an important phenomenon in many clustering applications: the clustering 
results that satisfy only the constraint on the number of clusters may not meet the 
practical requirements. It is necessary to involve more constraints into clustering 
process. 

This paper introduces a new constraint into the generic clustering problem: the 
upper bound of the quantified similarity between two clusters. The similarity may have 
different quantified values in different application domains. In the above supermarket 
example, the similarity between two clusters is represented by the distance between 
two clusters: the nearer, the more similar. The upper bound of the similarity between 
two clusters is the minimum allowable distance between their centers. We believe that 
the upper bound of similarity is a general constraint which is required by many 
clustering applications. To support the argument, we further provide an example on 
parallel task partitioning: as we know, computers in a distributed environment lack 
global addressing space, communication has to be inserted whenever a processor needs 
to access non-local data. For example, on the Intel Paragon the processor cycle time is 
20 nanoseconds whereas the remote memory access time is between 10000 and 30000 
nanoseconds [8], depending on the distance between communicating processors. 
Therefore, it is imperative that the frequency and volume of non-local accesses are 
reduced as much as possible. Suppose that the whole computing task is composed of n 

 



smaller tasks. Given k machines/processors, the attempt to assign the n small tasks to 
the k machines/processors is a k-clustering problem, which has several concerns: 
firstly, there is a communication bottleneck between the machines/processors. 
Secondly, it may not be worth to parallelize the computing task when the ratio of the 
communication cost to the total cost exceeds a preset threshold. Thirdly, in most cases, 
the number of available machines/processors is not always fixed but flexible. The three 
concerns can be exactly mapped into three corresponding constraints in clustering 
problem: the upper bound constraint, the min-max principle, and the number of 
clusters. 

Motivated by the above examples, this paper proposes a graph theoretic model that 
can represent the above three requirements (two user-input constraints and one 
application-independent min-max principle): 1) the desired number of clusters; 2) the 
objective function of clustering that reflects the min-max principle, and 3) the upper 
bound of the similarity between two clusters. In particular, the desired number of 
clusters in the proposed model is represented with a range (Kmin, Kmax), minimum and 
maximum allowable number of clusters, respectively. The objective function is defined 
as the ratio of the similarity within the cluster to the similarity between clusters. 
Maximizing the proposed objective function not only follows the min-max principle 
but also meets certain practical requirements, e.g., in parallel task partitioning, the ratio 
decides if it is worth to parallelize the computation task; in spatial data clustering, the 
objective function is the ratio of the density inside the cluster to the density outside the 
cluster when representing the spatial data sets as sparse graphs. Based on the three 
requirements, this paper proposes a two-step graph partitioning methodology to 
discover constrained clusters. The basic idea involves node sequencing and then 
partitioning the node sequence according to the constraints. In the sequencing process, 
the graph nodes are sorted using existing algorithms. In the partitioning process we 
find an appropriate cut point according to the objective function along the ordered node 
sequence so that all points on one side will be output as a cluster while all points on the 
other side will remain for further partitioning until all constraints are satisfied or the 
number of produced clusters exceeds Kmax. 

The rest of this paper is organized as follows. Related work on graph partitioning 
and constrained clustering is introduced in Section 2. Section 3 proposes our two-step 
methodology. The experimental studies on word grouping and result visualization are 
presented in Section 4. Section 5 concludes the paper. 

       
2    Related Work 
Since this paper focuses on a constrained graph partitioning for data clustering, the 
related work can be categorized into two parts: graph partitioning and constraint-based 
data clustering.  

2.1    Graph Partitioning  

Numerous graph partitioning criteria and methods have been reported in the literature.  
We consider matrix transformation and ordering since our method proposes similar 
techniques. The optimal solution to the graph partitioning problem is NP-complete due 
to the combinatoric nature of the problem [3, 4]. The objective of graph partitioning is 
to minimize the cut size [3], i.e., the similarity between the two subgraphs with the 
requirement that the two subgraphs have the same number of nodes. It is important to 

 



note that minimizing the cut size for each partitioning step cannot guarantee a minimal 
upper bound of the cut size for the whole clustering process.  

Hagen and Kahng [6] remove the requirement on the sizes of the subgraphs and 
show that the Fiedler vector provides a good linear search order to the ratio cut (Rcut) 
partitioning criteria, which is proposed by Cheng and Wei [2]. The definition of Rcut is: 
Rcut=cut(A,B)/|A|+cut(A,B)/|B|, where G=(V,E) is a weighted graph with node set V 
and edge set E, cut(A,B) is defined as the similarity between the two subgraphs A and B 
and |A|, |B| denote the size of A, B, respectively. 

Shi and Malik [10] propose the normalized cut by utilizing the advantages of 
normalized Laplacian matrix: Ncut=cut(A,B)/deg(A)+cut(A,B)/deg(B), where deg(A) is 
the sum of node degrees, which is also called the volume of subgraph A, in contrast to 
the size of A. Ding et al. [3] propose a min-max cut algorithm for graph partitioning 
and data clustering with a new objective function called Mcut=cut(A,B)/W(A)+ 
cut(A,B)/W(B), where W(A) is defined as the sum of the weights of the edges belong to 
subgraph A. 

All objective functions above are designed for their algorithms to find an 
appropriate partitioning. They are algorithm-oriented and cannot reflect the practical 
requirements or physical meanings, which make them infeasible to serve a constrained 
clustering. 

2.2    Constraint-based Data Clustering 

According to Tung et al., constraint-based clustering [11] is defined as follows. Given 
a data set D with n objects, a distance function df: D X D  R, a positive integer k, and 
a set of constraints C, find a k-clustering (Cl1,Cl2,…Clk) such that  

DISP=∑=

k

i
ii repCldisp

1
),(  

is minimized, and each cluster Cli satisfies the constraints C, denoted as Cli|=C, where 
disp(Cli, repi) measures the total distance between each object in Cli and the 
representative point repi of Cli. The representative of a cluster Cli is chosen such that 
disp(Cli, repi) is minimized. There are two kinds of constraint-based clustering 
methods, aiming at different goals: one category aims at increasing the efficiency of 
the clustering algorithm while the other attempts to incorporate domain knowledge 
using constraints. Two instance-level constraints: must-link and cannot-link constraints 
have been introduced by Wagstaff and Cardie [12], who have shown that the two 
constraints can be incorporated into COBWEB [5] to increase the clustering accuracy 
while decreasing runtime. Bradley et al. propose a constraint-based k-means algorithm 
[1] to avoid local solutions with empty clusters or clusters with very few data points 
that can often be seen when the value of k is bigger than 20 and the number of 
dimensions is bigger than 10. 

The proposed method is different from the aforementioned approaches: firstly, we 
combine graph partitioning and constrained-based clustering together. Secondly, the 
proposed partitioning process is different from the traditional partitioning in that for 
each partitioning step we produce only one cluster instead of two subgraphs. The 
remaining part will be further partitioned until all constraints are satisfied or the 
number of produced clusters exceeds Kmax. Thirdly, the upper bound constraint we 
introduce is new and its involvement does not aim at improving the efficiency of the 
clustering process but aim at encoding the user’s requirements. Finally, we accept both 

 



unweighted and weighted graphs. Section 3 will introduce the proposed two-step 
methodology. 

 
3    A Two-Step Methodology 
This section first describes the process of node sequencing, and then introduces the 
node partitioning method.  

3.1    Node Sequencing Method (NSM) 

The process of node sequencing transforms a two-dimensional graph into a one-
dimensional node sequence. The sequencing method used here is proposed in our 
previous paper [9]. Due to the space limitation, we only provide a brief introduction. 
The whole sequencing includes two steps: coarse-grained sequencing, which partitions 
the given graph into several parts and sorts these parts, and fine-grained sequencing, 
which sorts the nodes inside each part produced in the coarse-grained step. As a result, 
we obtain a sequence of nodes in which the nodes belonging to the same cluster will be 
put together. Then we can apply the node partitioning method to the node sequence to 
find the boundary points of clusters with constraints. 

3.2    Node Partitioning Method (NPM) 

This section proposes a novel node partitioning method. We first introduce the 
algorithm parameters used in the algorithm.  

3.2.1    Algorithm Parameters 

The algorithm parameters used in NPM include alpha1, alpha2, beta, and Einter, which 
are defined as follows. Given a node sequence S of n nodes, and a cut at ith node 
separates S into two sub-sequences, say S1, and S2 where S1 contains the nodes from 1 
to i, and S2 contains the nodes from i+1 to n. Let E1 denote the number of edges inside 
S1 and E2 the number of edges inside S2, and Einter the number of edges between S1 and 
S2, we have the following algorithm parameters, as intuitively shown in Fig. 2. 

alpha1(i)= E1 /(i(i-1)/2)                                 (1) 
alpha2(i)= E2/((n-i)(n-i-1)/2)  (2) 

 beta(i)= Einter /(((n-i)⋅i)/2)                               (3) 
As Fig. 2 shows, the big square represents an adjacency 
matrix of the given graph, and the cut at i separates the 
node sequence 1...n into 1...i, and i+1...n. alpha1 
represents the density of the upper left square, alpha2 
represents the density of the lower right square, and 
beta represents the density of the upper right or lower 
left square. 

Given a node sequence S of n nodes, for every node 
i, 1<i<n, “cut at i” means partitioning the sequence at 

the ith node. A cut at i is acceptable only if its corresponding objective function 
cutvalue(i) is a peak value. A cutvalue(i) is a peak value means that cutvalue(i) is 
bigger than any other cutvalue bwteen i-ε and i+ε where ε is a threshold defined as 
n/2k and k is the number of desired clusters. Cutvalue measures the ratio of the 
similarity within the cluster and the similarity between clusters and helps discovering 
where we should separate the node sequence. Its definition is: 

 
         Fig. 2. The physical meanings 

       of the algorithm parameters 

 



cutvalue(i)=                            (4) 
0)(
0)(

)(1
)(/)(1

=
<>

⎩
⎨
⎧

+ ibeta
ibeta

ialphaMAX
ibetaialpha

The MAX in formula (4) is a very big constant used to distinguish the nodes when 
beta(i) is zero. According to the definitions, beta(i) represents the density of inter-
cluster area while alpha1(i) is the density of intra-cluster area. The physical meaning of 
using the ratio of alpha1(i) to beta(i) is to effectively reflect the relative density. If 
cutvalue increases significantly, the corresponding cut point is more possibly located at 
the boundary of two clusters. 

Now let us define the upper bound 
constraint for the similarity between 
two clusters. For clusters Ci and Cj, and 
nodes u∈ Ci, v∈ Cj, if (u,v)∈E, we say 
(u,v) is an edge between clusters Ci and 
Cj. Let inter(i,j) denote the number of 
edges between clusters Ci and Cj and 
sum_inter(i,j) the sum of the weights of 
the edges between clusters Ci and Cj.  
We have the following definitions:   

Algorithm ComputeCut(Graph g, Integer n) 
begin 
   for each i from 2 to n-2  

 compute alpha1(i), beta(i), and 
 cutvalue according to (4) 

    for each node i from 1 to n do 
 cut getFirstPeak(cutvalue[i]); 

    return cut; 
end 
 
Algorithm Npm (NodeSequence seq) {seq is 
the result after node sequencing} 
begin 
    t 0, i 0; 
    while (i<Kmin) do 
     begin {the partitioning procedure} 

  Remove the nodes before Node[t] from 
  seq; n n-t; 
  Create the residual graph;  
  t ComputeCut(g,n);  i i+1; 

      end 
    while (Uinter>U) && i<Kmax) do 

 repeat the partitioning procedure;  
    if (Uinter>U) return clustering result; 
    else return (“No such kind of clustering”);
end 
Fig. 3. The ComputeCut Algorithm and the 

whole NPM algorithm 

Definition 3.1 (Coupling Bound, 
Bound Constraint) 
Coupling Bound is the biggest number 
of inter-cluster edges for a clustering 
result, represented by an integer Uinter: 
Uinter =Max(inter(i,j)),∀ i,j ∈{1,2,….,k}, 
i≠j. For weighted graphs, coupling 
bound is the maximal sum of the 
weights of inter-cluster edges, denoted 
by an integer Uinter-w: Uinter-w=Max 
(sum_inter(i,j)), ∀i,j∈{1,2,…,k}, i≠j. 
Bound Constraint, denoted by U, is a 
user-input constraint on the maximum 
allowable coupling bound. For a 
satisfactory clustering result, the 
formula Uinter <U must hold (for 

weighted graph, the formula is Uinter-w <U). 
Definition 3.2 (Granularity, G-constraint) 
Granularity is defined as the number clusters for a clustering result, denoted by an 
integer k. G-constraint is a pair of integers (Kmin, Kmax) input by the user. For a 
satisfactory clustering result, the formula Kmax ≥ k ≥ Kmin must hold. 

Fig. 3 describes the algorithms that computes the cutvalue for each cut at i and 
returns the cut with the first peak value and the whole NPM algorithm. 

 
4    Experimental Studies 
Our experimental studies consist of three parts: the first part evaluates min-max 
principle and demonstrates that the parameter values represent the data distribution 
precisely. The second part of our experiments evaluates the ability of our approach on 

 



constraint satisfaction. Since there are two kinds of constraints involved in our 
algorithm: the upper bound constraint and the range of the desired number of clusters, 
the second part uses a set of synthetic constraints to evaluate if our algorithm can find 
the constrained clustering results for the given data set. The third part of our 
experiments visualizes the clustering results intuitively and compares our results with 
the one produced by Kamada and Kawai’s method, a well-known force-directed 
(spring) graph clustering algorithm.     

The clustering task in our experiments is word grouping, a basic technique of text 
mining and document clustering. The testing data are generated from the subsets of an 
English dictionary. In the first part of our experiments, two data sets: DS1 and DS2 are 
used. In the second part of our experiments, three data sets: DS3, DS4, and DS5 are 
used. The properties of their corresponding graphs are shown in Table 1. The similarity 
between two words is defined on their edit distance except for DS1. Each word is 
regarded as a graph node and if the edit distance between two words is less than a fixed 
threshold, there is an edge between the two corresponding nodes. For DS1, there is an 
edge between the two nodes if and only if the two corresponding words have the same 
length. 

Table 1. The properties of the five testing data sets 
Testing 

Data 
Number 
of Nodes 

Number 
of Edges 

Threshold of  
Edit Distance 

Result 
shown in 

     DS1    3419    146284 N/A Fig. 4 

     DS2     472       428 1 Fig. 5 

     DS3     300       953 2 Fig. 6 (a) 

     DS4     1000      4908 2 Fig. 6 (b) 

     DS5     5000    312834 2 Fig. 6 (c) 

4.1    Parameter Effectiveness 

(a)                                                                              (b) 
Fig. 4. (a) Values of alpha1 and alpha2 for DS1 in the first partitioning step  (b) Values of beta 

for DS1 in the first partitioning step  
Fig. 4 (a) shows the computed values of the two algorithm parameters: alpha1 and 

alpha2 for DS1. According to the similarity definition of DS1, the words with the same 
length form a complete graph; the whole graph contains 6 complete subgraphs that are 
isolated from each other. The boundaries of the 6 subgraphs/clusters are clearly shown 
where the values of alpha1 drops dramatically. 

 



Fig. 4 (b) shows the computed values of beta. We can see that the values of beta 
reach minimum at the boundaries of clusters while the values of alpha1 reach 
maximum at the boundaries. According to the definition of cutvalue, the value of 
alpha1(i)/beta(i) would be significantly bigger when i is the index of a boundary point, 
i.e., the cutting point can be correctly found. 

Fig. 5. The values of beta (a) before applying BEA and (b) after applying BEA for DS2. 

Fig. 6. the constraint satisfaction process for (a) DS3 (b) DS4 and (c) DS5 

 



Fig. 5 shows the difference on the values of beta before and after applying the 
BEA. Fig. 5(a) shows that before applying the BEA the couplings between the data 
points are not very different and we cannot find a cut point to partition the node 
sequence. After applying BEA to the same graph, we find that the difference of 
couplings of different clusters is sharpened while the distribution of the coupling 
values inside the cluster becomes smoother. As clearly shown in Fig 5 (b), the graph 
contains six clusters. 

4.2    Constraint Satisfaction 

This part of experiments evaluates whether the proposed partitioning algorithm can 
produce satisfactory results according to different user-input constraints. Each testing 
graph is evaluated against 8 different clustering requirements and each requirement 
contains two kinds of constraints, as defined in Section 3. Each of Fig. 7 (a), Fig. 7 (b), 
and Fig. 7 (c), contains two sub-figures, corresponding to the two kinds of constraints 
respectively. The 8 requirements are designed from loose to strict, i.e., the first 
requirement is the easiest to be satisfied and the last is the hardest. If the produced 
granularity is between the minimum and maximum requirement, the corresponding 
clustering result is satisfactory on granularity; if the coupling bound of the produced 
result is below the upper bound constraint, the corresponding clustering result is 
satisfactory on coupling. If both kinds of constraints are satisfied, the clustering result 
is satisfactory. 

4.3    Result Visualization 

Another way to evaluate our approach is to visualize the results. Fig. 8(a) shows the 
original graph with 320 nodes. The graph nodes belong to the same cluster are in the 
same gray level. We apply a popular force-directed graph clustering algorithm: 
Kamada and Kawai’s method [7] to the graph and its result is shown in Fig. 8 (b) while 
our results are shown in Fig. 8 (c) and (d). Although our approach does not compete 
with Kamada and Kawai’s method on the quality of graph layout, it separates clusters 
clearly. In Fig. 8 (b) many graph nodes belong to different clusters are mixed up while 
our method can discover all clusters correctly. Fig. 8 (c) and (d) show that our method 
can produce different numbers of clusters according to the user input. Apart from the 
advantage on effectiveness, our method is faster than Kamada and Kawai’s method. It 
takes only several minutes for our program to generate the results in Fig. 8 (c) and (d) 
while Kamada and Kawai’s method needs more than 1 hour to reach a stable layout.  

(a)                                      (b)                               (c)                                         (d) 
Fig. 8. (a) the original graph before clustering (b) the same graph after applying Kamada and 

Kawai’s method. The same graph after applying our algorithm with (c) 16 clusters (d) 8 clusters 

 



5    Conclusions 
This paper has presented a novel graph partitioning method for constrained data 
clustering. A new constraint: upper bound of the similarity between two clusters is 
introduced and solved with the proposed graph partitioning method. The method 
consists of two steps: sequencing the given set of graph nodes, and then partition the 
node sequence into final clusters. This method has at least two advantages: first, the 
objective function not only follows the theoretical min-max principle but also reflects 
certain practical requirements. Second, new constraints from practical clustering 
problems are introduced and solved so that the clustering results can be tailored to 
more application needs while unconstrained methods can only control the number of 
produced clusters. Our experimental studies have visualized the clustering results 
intuitively and demonstrated that the combination of graph partitioning and constrained 
data clustering is successful. Future work will explore whether it is possible to locate 
the feasible range of the constraints for a given clustering task so that the user can be 
guided on constraint input. 

 
References 
1. Bradley, P. S., Bennett, K. P., and Demiriz, A. Constrained K-Means Clustering, In MSR-TR-
2000-65, Microsoft Research. (2000) 
2. Cheng, C-K., and Wei, Y. A. An improved two-way partitioning algorithm with stable 
performance. IEEE. Trans. on Computed Aided Design. 10 (1991), pp. 1502-1511. 
3. Ding, H. Q. C., He, X., Zha, H., Gu, M., and Simon, H. A Min-Max Cut Algorithm for Graph 
Partitioning and Data Clustering. Proc. of International Conf on Data Mining, (2001), pp. 107-
114. 
4. Donath, W. E. and Hoffman, A. J. Lower bounds for partitioning of graphs. IBM J. Res. 
Develop., 17 (1973), pp. 420-425. 
5. Fisher, D. Knowledge acquisition via incremental conceptual clustering, Machine Learning, 2, 
(1987), pp. 139-172. 
6. Hagen, L. and Kahng, A. B. New spectral methods for ratio cut partitioning and clustering. 
IEEE Trans. on Computed Aided Design, 11(1992), pp. 1074-1085. 
7. Kamada, T. and Kawai, S. An algorithm for drawing general undirected graphs. Information 
Processing Letters, 31(1989), pp. 7-15. 
8. Kandemir, M., Banerjee, P., Ramanujam, J., and Shenoy, N. A global communication 
optimization technique based on data-flow analysis and linear algebra. ACM Transactions on 
Programming Languages and Systems, Vol. 21, No. 6, (2000) pp.1251-1297. 
9. Qian, Y. and Zhang, K.: A Customizable Hybrid Approach to Data Clustering. Proc. of the 
2003 ACM Symposium on Applied Computing, (2003) 485-489. 
10. Shi, J. and Malik, J.: Normalized cuts and image segmentation. IEEE Trans. on Pattern 
Analysis and Machine Intelligence. Vol. 22, No. 8, (2000), pp. 888-905. 
11. Tung, A. K. H., Han, J., Lakshmanan, L. V. S., and Ng, R. T. Constrained-based clustering in 
large databases, Proc. 8th Intl. Conf. on Database Theory (ICDT’01), London, UK, (2001), pp. 
405-419. 
12. Wagstaff, K. and Cardie, C. Clustering with instance-level constraints, Proc. of the 17th Intl. 
Conf. on Machine Learning, (2000), pp. 1103-1110. 

 


	1    Introduction
	2    Related Work
	2.1    Graph Partitioning
	2.2    Constraint-based Data Clustering

	3    A Two-Step Methodology
	3.1    Node Sequencing Method (NSM)
	3.2    Node Partitioning Method (NPM)
	3.2.1    Algorithm Parameters


	4    Experimental Studies
	4.1    Parameter Effectiveness
	4.2    Constraint Satisfaction
	4.3    Result Visualization

	5    Conclusions
	References

