
590 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012

Web Interface Interpretation Using Graph Grammars
Jun Kong, Omer Barkol, Ruth Bergman, Ayelet Pnueli, Sagi Schein, Kang Zhang, and Chunying Zhao

Abstract—With the advent of the Internet, it is desirable to in-
terpret and extract useful information from the Web. One major
challenge in Web interface interpretation is to discover the se-
mantic structure underlying a Web interface. Many heuristic ap-
proaches have been developed to discover and group semantically
related interface objects. However, those approaches cannot solve
the problem of nonuniformity satisfactorily and are not able to tag
the semantic role of each object. Distinct from existing approaches,
this paper develops a robust and formal approach to recovering in-
terface semantics using graph grammars. Because of the distinct
capability of spatial specifications in the abstract syntax, the spa-
tial graph grammar (SGG) is selected to perform the semantic
grouping and interpretation of segmented screen objects. Instead
of analyzing HTML source codes, we apply an efficient image-
processing technology to recognize atomic interface objects from
the screenshot of an interface and produce a spatial graph, which
records significant spatial relations among recognized objects. A
spatial graph is more concise than its corresponding document ob-
ject model structure and, thus, facilitates interface analysis and
interpretation. Based on the spatial graph, the SGG parser recov-
ers the hierarchical relations among interface objects.

Index Terms—Data extraction, graph grammar, image
processing, page segmentation.

I. INTRODUCTION

W ITH the large amount of heterogeneous data on the Web,
it is desirable to automatically interpret a Web interface

and extract useful information [4]. One major challenge in Web
interface interpretation is to discover the Web interface seman-
tics, i.e., page segmentation, which groups semantically related
interface objects in a hierarchical structure and accordingly tags
the semantic role of each object [46].

Since Web interfaces are created autonomously, the irregu-
larities caused by different designers and organizations make
it challenging to extract interface semantics. Many researchers
have explored heuristic approaches [1], [7], [10]–[12], [14],
[15], [21], [22], [35], [44]–[46] to discovering the information

Manuscript received March 15, 2011; revised July 27, 2011; accepted
September 22, 2011. Date of publication December 7, 2011; date of current
version June 13, 2012. This work was supported in part by HP Labs Innovation
Research Program (2009-1047-1-A and 2009-1048-1-A). This paper was rec-
ommended by Associate Editor A. M. Tjoa.

J. Kong is with the Department of Computer Science, North Dakota State
University, Fargo, ND 58108 USA (e-mail: jun.kong@ndsu.edu).

O. Barkol, R. Bergman, A. Pnueli, and S. Schein are with HP Labs,
Haifa 32000, Israel (e-mail: omer.barkol@hp.com; ruth.bergman@hp.com;
ayelet.pnueli@hp.com; sagi.schein@hp.com).

K. Zhang is with the Department of Computer Science, University of Texas
at Dallas, Richardson, TX 75080 USA (e-mail: kzhang@utdallas.edu).

C. Y. Zhao is with the Department of Computer Science, Western Illinois
University, Macomb, IL 61455 USA (e-mail: c-zhao@wiu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCC.2011.2171335

organization underlying a Web page. These heuristic approaches
in general perform page segmentation by analyzing the docu-
ment object model (DOM) structure through a set of heuristic
rules. However, HTML is a very flexible language and different
designers may use the HTML language completely differently.
For example, tables in HTML are designed to organize and dis-
play tabular data, implying that information in a table is closely
related. However, by not displaying the table border, many de-
velopers use a table as an organization grid to layout pictures
and texts. In this case, information enclosed in a table may
not necessarily be semantically relevant. Ahmadi and Kong [1]
have evaluated six heuristic rules on three genres of Web sites
(e.g., news, travel, and shopping) and concluded that heuris-
tic rules have different accuracies on different genres. In addi-
tion to the diversity of HTML usages, the complexity of DOM
structures also negatively affects the performance of page seg-
mentation. Furthermore, heuristic approaches can group closely
related information, but they are not capable of tagging semantic
roles.

Recently, visual language formalisms have been proposed to
analyze Web interfaces [30]. Distinct from heuristic approaches,
this approach formalizes a common Web pattern as a graph
grammar, which formally and visually specifies the informa-
tion organization underlying a Web page. The grammar-based
approach interprets a Web page from bottom to top and, thus,
needs to first recognize atomic information objects before page
segmentation. However, it is challenging to recognize atomic in-
formation objects from the DOM structure. For example, in an
HTML Web page, a line of texts (i.e., an atomic interface object)
may be separated by several HTML tags, and the seperation is
content dependent.

Based on the preliminary work [48], this paper proposes a
novel approach to page segmentation, taking advantage of graph
grammars to provide robust page segmentation without relying
on DOM structures. Because of the unique spatial specifica-
tion capability in the abstract syntax, the spatial graph grammar
(SGG) [29] is used in our approach to analyze Web interfaces.
Spatial specifications in the abstract syntax enable designers
to model interface semantics with various visual effects (e.g.,
a topological relation between two interface objects). Our ap-
proach interprets a Web page, or any interface page, directly
from its image, instead of DOM structures. Image-processing
techniques [16] are used to divide an interface image into differ-
ent regions and recognize and classify atomic interface objects,
such as texts, buttons, etc., in each region. The object recognition
produces a spatial graph, in which nodes represent recognized
atomic objects and edges indicate some significant spatial re-
lationships (such as touch and containment). Finally, the SGG
parser parses the spatial graph to discover the hierarchical rela-
tions among those interface objects based on a predefined graph
grammar.

1094-6977/$26.00 © 2011 IEEE

KONG et al.: WEB INTERFACE INTERPRETATION USING GRAPH GRAMMARS 591

To our knowledge, the aforementioned approach is the first
to combine image processing with graph grammar, which effec-
tively addresses the issue of nonuniformity and simplifies page
segmentation. The discovered interface semantics is useful in
many Web-based applications, such as content adaptation, in-
formation retrieval, or usability evaluation. For example, based
on the discovered semantics, we can adapt the information pre-
sentation to mobile devices or retrieve records by combining
the interface semantics with a data model and a query language.
Furthermore, the interface interpretation can verify whether dif-
ferent Web pages conform to a common pattern or not. In ad-
dition to Web interfaces, our work can be applicable to normal
GUI applications and is useful to complement public application
programming interfaces to extract useful data.

The rest of this paper is organized as follows. Section II
introduces the background. Section III reviews related work.
Section IV gives an overview of our approach. Section V illus-
trates our approach through a small example. Section VI goes
through a case study. Section VII discusses the evaluation re-
sults of the case study, followed by conclusion and future work in
Section VIII.

II. BACKGROUND

This section first introduces the image-processing technique
that is used to divide an interface image into several regions
and recognize atomic interface objects in each region, and then
introduces the SGG which is used to analyze the semantics
underlying a Web page.

A. Image Processing

We break the task of classifying the functional parts of a
GUI image into two phases. The first phase segments the image
into candidate elements. These elements are usually of simple
geometric shapes (i.e., rectangles and circles), and the second
phase assigns a label to each candidate element. While some
of the objects correspond to functional elements, such as links,
buttons, and edit boxes, other elements are not classified and
are considered as frames that can reflect the layout of a GUI.
Inferring an inclusion relation between these frames can be
utilized by the SGG parser to simplify the parsing process.

1) Graphical User Interface Segmentation: The first step
starts by finding edge points based on a linear line-detector filter
[27]. We convolve an image with a linear edge detector kernel
in the horizontal and vertical directions and threshold the result.
Then, long edges that are directed in the horizontal and vertical
directions are considered. Pairs of parallel edges are aggregated
to identify rectangles. Rectangle detection effectively identifies
both frames and object boundaries.

There are some GUI components with a very distinct appear-
ance, e.g., radio buttons and check buttons. For this kind of GUI
components, we apply custom detectors. The detector analyzes
the morphological edges in the image (a morphological edge is
the difference between the maximal and the minimal pixel val-
ues in a given neighborhood, usually 3 × 3 or 5 × 5 pixels) [27].
It looks for symmetrical and small edge blobs. Circular blobs

are detected as radio buttons, and square blobs are detected as
check boxes.

Additionally, many objects have a uniform color and a high
contrast with their background. Using this observation, even
in the absence of sharp edges, basic objects within a screen
image can be identified. The current algorithm relies mainly on
edge information and uses the primary colors to enhance the
segmentation when needed.

2) Graphical User Interface Object Recognition: The out-
put of the image segmentation is a set of partially classified
GUI elements, such as text and radio buttons. The task of the
classification phase is to further classify GUI elements into one
of the known classes of GUI objects or decide that a segment
is not a GUI object. We employ a three-step approach for GUI
element recognition.

1) Represent each element as a vector in a high-dimensional
feature space. Selecting the proper object representation is
crucial in any object recognition system. Features should
be discriminative, and two different objects should be rep-
resented as two different feature vectors, but they should
also be robust to uninformative differences. For example,
in the case of GUI objects, color is usually regarded as an
uninformative trait. We represent objects using two types
of features that are concatenated into a single vector: (1)
basic geometric features and (2) projection features. The
first part represents the geometry of the object, e.g., width
and height. The second part is based on the notion of
projection [25], [27].

2) Define a distance function to compare the similarity be-
tween pairs of elements. Since we have two different types
of features in a single unified vector, we also need two
different comparison measures. The dimension-based dis-
tance measure corresponds to the amount of deviation be-
tween the dimensions of the objects. Let Oi and Oj be two
objects of dimensions ni × mi and nj × mj respectively.
We define our geometric distance measure to be

M1(Oi,Oj) = 1 − min(mi,mj)
max(mi,mj)

· min(ni, nj)
max(ni, nj)

.

Note that M1(Oi,Oj) ∈ [0, 1]. To compare two
projection-based feature vectors [Svert(Oi), Shoriz(Oi)]
and [Svert(Oj), Shoriz(Oj)], we compute their edit-
distance [33], which is defined as the minimal number
of insertions, deletions, and swaps of characters that is
needed to turn one string into the other. The edit-distance
measure is robust to nonuniform scaling of GUI objects.
In other words, the most prevalent change between the
appearances of a database object and an instance is the
nonuniform scaling in one of the orthogonal directions.
Thus, edit-distance allows cheap changes such as stretches
(e.g., wider button), but pays costly for shape changes
(e.g., rectangle with rounded corners which is usually a
button versus rectangle with sharp corners which is usually
an edit box).

3) Search a database of tagged examples for the nearest
neighbor to classify a query object into a specific class.
To save execution time, we employ a cascading approach

592 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012

where each distance function filters the database so that
more expensive features are computed for a smaller num-
ber of database objects. First, the database is scanned to
find all objects which are closer than a threshold T1 rela-
tive to the shape measure M1 , and then, these objects are
compared using the projection measure M2 relative to a
threshold T2 . The selection of the threshold can be tuned
per-application/database to minimize classification errors.
According to the thresholds, the classification appears in
two stages, where the first stage is comparing features that
are cheap to compute, e.g., the object’s aspect ratio. This
crude filtering prevents from doing expensive computa-
tions on objects that are very dissimilar. The ones that
pass this first crude stage will have to go through the more
expensive edit-distance computation with T2 . The small
set of candidates is compared with the test object, and the
class of the database object which minimizes the weighted
sum is selected as the nearest neighbor [8] class. The out-
put of the classification phase is a set of GUI objects,
each with its class type and auxiliary information (e.g.,
object location, object geometry, and embedded text). A
GUI image might contain regions that are not part of any
token.

B. Spatial Graph Grammar

Graph grammars with their well-established theoretical back-
ground can be used as a natural and powerful syntax-definition
formalism [39] for visual languages, which model structures
and concepts in a 2-D fashion [18]. It defines computation in
a multidimensional fashion based on a set of rewriting rules,
i.e., productions. Each production consists of two parts: a left
graph and a right graph; the difference of which visually in-
dicates the changes caused by a computation. Most of graph-
grammar formalisms use nodes to represent objects and edges
to model relations between objects in the abstract syntax. Dif-
ferent from other graph-grammar formalisms, the SGG [29]
introduces spatial notions to the abstract syntax. The direct rep-
resentation of spatial information in the abstract syntax makes
productions easy to understand since grammar designers of-
ten design rules with similar appearances as the represented
graphs. In other words, using spatial information to directly
model relationships in the abstract syntax is coherent with
the concrete representation. The SGG production in Fig. 1(a)
models the composition of an information block. In this ex-
ample, an edge between two nodes indicates a semantic rela-
tion. According to the production in Fig. 1(a), a product in-
formation block is made of three information blocks, i.e., link,
image, and text. The link has a close semantic relation with
the image, which in turn has a semantic relation with the text.
Furthermore, the link is placed above the image, and the image
above the text. SGG supports the syntax-directed computation
through action code. An action code is associated with a produc-
tion and is executed when the production is applied. Writing an
action code is like writing a standard event handler in Java. In the
aforementioned example, the action code specifies that the size
of the product information block is merged from three informa-

Fig. 1. (a)–(c) SGG formalism.

tion blocks, i.e., Link, Image, and Text. A complete description
of the SGG is discussed in [29].

Applying a production to an application graph, which is usu-
ally called a host graph, is referred to as a graph transformation.
A redex refers to a subgraph in the host graph which is isomor-
phic to the right graph in a parsing process. In other words,
in the graph transformation in a parsing process, we search in
the host graph for a subgraph that matches the right graph of
a production and replace this subgraph with the left graph in
the production. For example, Fig. 1(b) shows a host graph, i.e.,
an abstraction of a Web page. The redex that matches the right
graph in Fig. 1(a) is highlighted in the dotted rectangle. After
one graph transformation that groups related information, the
new host graph is updated as shown in Fig. 1(c). In the graph
transformation, SGG uses the marking technique to handle the
embedding issue and dangling edges.

III. RELATED WORK

As a challenging issue in Web interface interpretation, page
segmentation has attracted much attention. Distinct from pre-
vious work, this paper develops a novel approach, which inte-
grates the advantages of image-processing and graph-grammar
techniques. The image-processing technique efficiently recog-
nizes information objects and abstracts the original Web pages
as a concise spatial graph, while graph grammar provides a
solid foundation for interpreting a Web interface in terms of
its spatial configuration. Currently, various page segmentation
methods have been proposed for different applications. Those
methods have been evaluated on different Web sites. In order to
have an objective and quantitative comparison among different
approaches, it is necessary to set up several benchmark Web
sites for the evaluation and comparison purpose. Especially,
those benchmark Web sites should cover different categories so
that we can compare both the accuracy and generality.

In order to allow users to find information of interest quickly,
a good Web designer often observes design guidelines to ren-
der information on the Web. For example, some HTML tags

KONG et al.: WEB INTERFACE INTERPRETATION USING GRAPH GRAMMARS 593

are commonly used to imply a boundary between interface ob-
jects. Those observations motivate various heuristic approaches,
which discover blocks of closely related contents by analyzing
the visual appearance or the HTML DOM structure of a Web
page. Those approaches are automatic and efficient in group-
ing relevant information. Different from our grammar-based
approach, they lack a formal basis and do not recover the se-
mantic role of each interface object, which is useful in many
applications.

Many heuristic approaches [11], [12], [28], [35] use HTML
structural tags (like Table) to partition a Web page. Kaasinen
et al. [28] proposed an HTML/WML conversion proxy server,
which converts HTML-based Web contents to WML by map-
ping HTML structures to WML specifications. For example,
it converts an HTML table to a WML table, an indexed sub-
tree or a list according to the table size and viewing capacity.
Buyukkokten et al. [11], [12] divided a Web page into sev-
eral semantic textual units through HTML tags, e.g., the tag
P might serve as the boundary between two semantic textual
units. This method, however, only focuses on texts without sup-
porting graphics. SmartView [35] used a thumbnail to provide
a visual overview of a page and partition a page into logic units
according to table tags. Opera [36] offers a small-screen render-
ing technology, which stacks Web contents vertically to avoid
horizontal scrolling. This method may falsely separate closely
related contents and combine unrelated information together.
The DOM-structure-based analysis is limited by the complexity
of DOM structures.

Recently, visual analysis has attracted more and more at-
tention. Yang and Zhang [45] evaluated the visual similarities
of HTML contents, detected the pattern of visual similarity,
and then generated a hierarchical representation of the HTML
page. Chen et al. [14] first divided a Web page into several
high-level information blocks according to their sizes and loca-
tions, and, then, identified explicit and implicit separators inside
each high level block. Based on the partition, a Web page
is adapted to several subpages with a two-level hierarchy: a
thumbnail at the top level for an index of contents and a set
of subpages at the bottom level for detailed reading. CMo [9]
utilizes geometrical alignment of frames to segment a Web
page. Paterno and Zichittella [37] dynamically split the pre-
sentation of a desktop page by calculating the cost (e.g., the
number of pixels of images or font sizes) of information ob-
jects. The vision-based page segmentation (VIPS) [13], [46]
utilizes useful visual cues and DOM structures to obtain the
partition of a Web page at the semantic level. Xia et al. [43] ad-
justed the VIPS algorithm to produce an SP-tree that represents
the hierarchical structure of information blocks in a Web page.
Hattori et al. [23] calculated the strength of connections be-
tween content elements based on the structural depth of HTML
tags and analyzed the layout to segment a page. Ahmadi and
Kong [1] analyzed both the DOM structure and the visual lay-
out to divide the original Web page into several subpages, each
including closely related contents and suitable for small-screen
display. This approach supports automatic generation of a ta-
ble of contents to facilitate the navigation between different
subpages.

Visual language formalisms have been applied to analyzing
patterns of Web queries [47]. Given a grammar in the form of
a variant of the attributed multiset grammar [20], which spec-
ifies commonly used Web query patterns, a best-effort parser
analyzes a query form by parsing the spatial arrangement of
visual objects inside the form. This paper emphasizes on query
interface, instead of a whole Web page. Kong et al. [30] uses
SGG to analyze the semantics of a Web page. This approach is
based on DOM specifications, instead of an image analysis.

HTML scraping [34] has been widely used to scrape HTML
Web pages. Based on predefined regular expressions, the HTML
scraping technique can efficiently extract useful data from Web
pages. Wrapper induction [2], [19], [31] is used to extract struc-
tured data from Web pages or semistructured documents. Labský
et al. [32] combined the hidden Markov models with image clas-
sification to extract structured information. Wong and Lam [42]
proposed a novel framework, which can automatically adapt a
previously learned wrapper from a source Web site to a new
unseen site in the same domain. Instead of analyzing the or-
ganization of all information in a Web page, those approaches
emphasize on extracting structured knowledge in response to
a submitted query. Some researchers [3], [4] analyzed the de-
tailed contents in an HTML Web page to extract semistructured
data. Ashraf and Alhajj [3] proposed a novel approach, called
ClusTex, which applies a clustering technique for information
extraction from HTML pages. This approach first uses a clus-
tering technique to divide raw data into clusters, which are then
refined to eliminate irrelevant information. Ashraf et al. [4]
later applied ClusTex to a number of Web sites from different
domains. The evaluation results show good performance. Dif-
ferent from ClusTex, our approach interprets a Web page from
its layout, instead of detailed contents.

Recently, the visual perception technique has been applied to
extract structured data, since it is independent from the detailed
implementation underlying a Web page. These approaches [17],
[49] basically calculate the visual similarity among different
Web pages to group semantically related information. Zheng
et al. [49] introduced a template independent system to iden-
tify news articles based on visual consistency. This approach
summarizes a set of visual features to present news stories and
then automatically generates a template-independent wrapper
based on those visual features. Chen and Xiao [17] proposed
a system to extract news stories based on visual perception.
First, it identifies the areas that contain news stories based on
content functionality, space continuity, and formatting continu-
ity. After detecting the news areas, news stories are extracted
based on the position, format, and semantics. The two aforemen-
tioned approaches [17], [49] are limited to extract news stories
and are not applicable to other domains. Distinct from those
two approaches, our approach is general to different application
domains.

IV. SYSTEM DESIGN

Fig. 2 shows an overview of our approach. Page segmenta-
tion proceeds in two steps: 1) recognize interface objects in an

594 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012

Fig. 2. Web interface interpretation.

interface image; and 2) interpret the interface through graph
grammars.

Our approach interprets an interface from bottom to top.
Therefore, the first step is to recognize and classify inter-
face objects. HTML tags may separate an atomic interface
object into several pieces. For example, in order to high-
light several words, a sentence, i.e., an atomic interface ob-
ject, may be separated into several pieces by the HTML tag
. Since the separation is completely content dependent,
it is challenging to derive some general rules to consolidate
those pieces into atomic interface objects from the perspec-
tive of DOM structures. In our approach, image segmentation
techniques, such as line detection, text detection, and template
matching, are applied to identify interface objects in an inter-
face image. In addition, object recognition techniques are used
to recognize the interface object types, such as buttons, text
boxes, images, etc. Object recognition and classification di-
vide an interface into several regions and have the following
advantages.

1) Incremental analysis. Those regions provide natural
boundaries between composite interface objects. In other
words, we can interpret interface objects incrementally—
first, interpret interface objects within one region, and then
consider the relations between different regions. Such an
incremental analysis is inherently consistent with the hier-
archical design of Web interfaces. Designers, in general,
first divide an interface into several layout regions, and
then determine the organization and layout of interface
objects within each region.

2) Handling irregularity. If a region contains style excep-
tions, not captured by a graph grammar, we can simply
interpret those exceptional interface objects as the di-
rect children of the node representing the corresponding
region.

3) Performance. Limiting the spatial parsing in a small region
can reduce the search space and improve performance.

The visual analysis on the interface image generates a spa-
tial graph. In a spatial graph, nodes represent recognized in-
terface objects, and edges indicate siginicant spatial relations,
each indicating a close semantic relationship. We have evalu-
ated different Web sites and discovered that four spatial relations
strongly imply a close semantic relation between two objects,
i.e., touching, containment, vertical, and horizontal relations
within a small distance. Accordingly, each edge in a spatial

graph corresponds to one of those four relations. Meanwhile,
a spatial graph also records the coordinates of each recognized
interface object. Therefore, other additional spatial relations can
be derived from those coordinates. Compared with the source
HTML file, the spatial graph facilitates page segmentation by:
1) consolidating information pieces together; and 2) removing
all redundant contents (such as empty columns or tables, which
are used for adjusting layout).

After visual analysis, a graph grammar is applied to a spa-
tial graph to discover the interface semantics. In our appraoch,
page segmentation can be considered as a graph transforma-
tion issue. The input is a spatial graph that is abstracted from
a concrete Web interface, and the output is a tree that reveals
the hierarchical relations among interface objects. Therefore,
graph grammars are a natural computational model for page
segmentation. More specifically, the left graph in a production
may include a composite interface object, which is made of a set
of atomic/composite interface objects in the right graph. Each
production groups related objects locally and a complete graph
grammar provides a systematic specification to glue low-level
groups into a higher level group. Based on the graph grammar,
a parser constructs a hierarchical parsing tree, in which a leaf
node indicates an atomic interface object and an intermediate
node represents a composite object, bottom up as a coherent
interpretation for a Web interface. Our approach is not limited
to a specific graph-grammar formalism. This paper uses the
SGG [29] as the specification formalism to analyze Web inter-
faces because of its distinct capacity of spatial specification in
the abstract syntax. This unique feature enables us to extend our
approach to combine DOM analysis with image processing in
the future. The incremental parsing in our approach supports
reusing a portion of a graph grammar in different Web sites.
Even though two Web pages from different Web sites may be
different at a high level, some low-level patterns, such as the
organization of a paragraph, may be used repetitively across
different Web sites.

Following the human–computer interaction principle that
consistent layouts can improve the usability of an interface [40],
Web designers commonly use similar layouts to present the
same type of information. In other words, designers, in general,
follow previous successful experiences, which can be summa-
rized as guidelines, to present interface objects [24]. Some re-
searchers [26] summarized common design patterns across dif-
ferent Web sites. We have evaluated 21 commercial Web sites
and found that all those Web sites use two common patterns to
demonstrate product information [38]. The usage of common
patterns or standard guidelines makes our approach applicable
in practice. A graph grammar can be applied to different Web
sites that conform to one common pattern or standard. In or-
der to reduce the manual efforts of designing a graph grammar,
we plan to introduce grammar induction technique to automate
the grammar design process in the future. The automatic gram-
mar induction is especially useful when a content management
system is used to generate Web pages. The grammar induction
algorithm can automatically extract generation rules, and then,
a grammar parser can perform a reverse processing to discover
the underlying interface semantics.

KONG et al.: WEB INTERFACE INTERPRETATION USING GRAPH GRAMMARS 595

Fig. 3. NWA example. (a) Interface Image. (b) Interpretation.

In summary, our approach uses image analysis to recognize
atomic interface objects and applies the SGG to specify patterns
underlying Web pages. Based on the grammar, a graph parser
takes a spatial graph, which is abstracted from an interface
image, as input and produces a semantic interpretation of the
interface.

V. INTERPRETING WEB INTERFACES

Having given an overview of our approach, this section uses
the Northwest Airlines (NWA) example (see Fig. 3) to illustrate
our approach.

A. Northwest Airlines Web Page

Consider an example of NWA as shown in Fig. 3(a). The top
and the bottom include some isolated texts, which direct users to
other Web pages in the NWA. The central region, which includes
the main content, can be further divided into several regions. It
includes several topics, such as flight search and hotels. Those
topics are organized and displayed with the same pattern: Each
topic has a title and several lines of texts. A search interface is
displayed on the right of the central region.

B. Image Analysis

The input for the image analysis phase is the rendered Web
page of NWA Reservation Center. In the image analysis phase,
the image is first segmented using a suite of layout and object
detection algorithms. These include rectangle detection, radio
button detection, and text detection and recognition. We con-
struct a hierarchical tree based on object containment. Thus, at

Fig. 4. Nearest neighbor result for a SEARCH button.

this point, we have a partially classified tree. In Fig. 3(a), each
recognized object is highlighted with a rectangle. Objects are
coded by the type with different colors. For example, blue in-
dicates a radio button or check box, magenta indicates text, and
red indicates a rectangle of unknown type.

Next, the GUI object recognition algorithm classifies each of
the recognized rectangles based on a database, which includes
a variety of manually classified GUI objects with a typical Web
look and feel. In order to correctly recognize the type of an in-
terface object, classified interface objects in the database should
have a similar appearance as the elements in a page being an-
alyzed. Since many Web sites keep consistent appearances, the
database could be reused across different Web sites. In the afore-
mentioned example, all the text boxes, list boxes, and buttons
were classified correctly. Fig. 4, for example, shows the nearest
match found for the “Search” button. Although the colors, the
sizes, the aspect ratio, and the text on the buttons are different,
the nearest match is of the correct classification. An even better
match could be obtained if we use objects from the relevant site
in the database.

596 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012

Fig. 5. Spatial graph.

C. Page Segmentation

After image analysis, we have a fully classified set of lay-
out segments (frames) and GUI objects: their location on the
page, associated type, text value, and other spatial attributes. In
Fig. 3(a), the left side of the central region includes nine dif-
ferent topics about reservation. Each topic is displayed within
a rectangle, recognized as a Default_Value object, and includes
several lines of texts, each being recognized as a text object.
In the search interface at the right side, five types of atomic
interface objects are recognized as text, radio button, check box,
text box, and list box. Based on recognized interface objects and
their spatial features, a spatial graph is constructed by calcu-
lating significant spatial relations among those objects. Fig. 5
presents the spatial graph corresponding to the interface image
in Fig. 3(a).

Based on the spatial graph, we formalize the pattern of infor-
mation layouts as a graph grammar. In a graph grammar, the spa-
tial relations of containment, touching, and vertical/horizontal
relation within a short distance are visualized as edges, while
other spatial relations are defined through spatial specifications
[see Fig. 1(a)] in an SGG production. Fig. 6 presents the produc-
tions used to derive a topic on the left side of the central region.
Production P1 in Fig. 6 combines two adjacent lines of texts
as a composite interface object texts. The node default_value
in P1 serves as a context object. Production P2 is useful when
a topic includes an odd number of lines of texts. Production
P3 further combines two composite interface objects texts as

a larger composite object. Finally, Production P4 abstracts all
lines of texts as a composite interface object topic. The search
interface on the right of the central region in Fig. 3(a) can be
analyzed based on the complete graph grammar in Appendix 1
at http://viscomp.cs.ndsu.nodak.edu/Grammar/grammar.pdf. In
the future, we will integrate the concept of negative application
conditions in the parsing process to enforce a proper match.

Each graph transformation reveals a local composition, and
a sequence of graph transformations, i.e., the parsing process,
assembles local compositions into a global hierarchical struc-
ture. In other words, the nonterminal object that is defined in
the left graph is made up of (non)terminal objects in the right
graph, while context objects are not counted to the composi-
tion. Such a hierarchical structure, in which leaf nodes repre-
sent atomic interface objects while intermediate nodes indicate
composite objects, reveals the composition of interface objects.
The application of the graph grammar in Appendix 1 (refer to
http://viscomp.cs.ndsu.nodak.edu/Grammar/grammar.pdf) pro-
duces the hierarchical structure [see Fig. 3(b)] as an interpreta-
tion for the search interface in Fig. 3(a).

VI. CASE STUDY

A. System Implementation

We have implemented a prototype for page segmentation.
Our prototype mainly includes two subsystems: one supports

KONG et al.: WEB INTERFACE INTERPRETATION USING GRAPH GRAMMARS 597

Fig. 6. Productions used to analyze topics.

image analysis to recognize atomic interface objects and the
other supports spatial parsing for page segmentation.

For image analysis, we developed the CompDetect applica-
tion, which supports loading either an image or directly from
a URL. Once the image is loaded, CompDetect activates the
stages of segmentation and classification. Segmentation can be
done either incrementally or all at once automatically. The out-
put of the segmentation stage is presented visually on the screen
to allow manual inspection. The classification stage can be di-
vided into three stages. First, create a database, which is either
loaded from a previously created file or created by incremen-
tally fixing initial classification results. The second stage allows
the user to classify interface objects. Once again, the user can
supervise the classification result and fix them manually. The
last stage allows the user to save the classified objects into an
XML file in order to constitute an input for page segmentation
in the next step.

After image analysis, the automatically generated spatial
graph is sent to a visual programming environment, i.e., Visual
Environment for Graph Grammars: Induction and Engineering
(VEGGIE) [5], [6], for page segmentation. VEGGIE supports
the SGG specification and parsing. VEGGIE mainly consists of
three independent editors (i.e., the Type Editor, the Grammar
Editor, and the Graph Editor) and an SGG parser. The three
editors provide GUIs for designers to visually design a graph
grammar and are seamlessly working together in VEGGIE. The

combined views ease the switching between different editors
with a consistent look and feel, which enhances a coherent
understanding. Grammar designers can visually create visual
objects, i.e., node types, in the Type Editor, or import existing
node types from a file in the form of GraphML. Then, based on
these defined nodes, the designer can define productions in the
Grammar Editor. In the Graph Editor, the designer can visually
draw or import a spatial graph to be analyzed by the SGG parser.
The data files storing nodes, grammar, and graph are shared and
interoperated by all editors.

B. Commercial Web Site

We evaluated our approach on the Web site of Marks and
Spencer (M&S), which is a major British retailer. The M&S
Web site (http://www.marksandspencer.com/) hosts thousands
of different products. Presenting products to customers is one
of the most important functions on an online retailer Web site.
Therefore, we emphasize on analyzing the presentation of prod-
uct information. After investigating different M&S Web pages,
we have identified two common patterns, which are used across
the whole Web site.

1) Pattern 1—Presenting a product in detail. In order to
present the detailed information of a product, an image of
the selected product is displayed. At the right side and/or
below the image, textual description is provided for a de-
tailed description. The textual description may include
several paragraphs, each of which has several lines of
texts. In order to differentiate paragraphs, there are spaces
between paragraphs. In addition to displaying product in-
formation, a variant of this pattern is used to display navi-
gation links, which allow users to quickly switch between
different Web pages.

2) Pattern 2—Listing products. An online retailer Web site
needs to display a list of products so that a customer can
choose any of them for details. At the M&S Web site, the
overview of each product, in general, includes three parts.
The top shows a small picture describing the product;
below the small picture is a brief textual description, which
may include several lines of texts; the bottom contains the
price and customers’ rating, which are presented in text.
A list of products is presented from left to right and top
down.

Although the Web pages of the M&S Web site have different
contents, they are all made up of the aforementioned two pat-
terns. Fig. 7 presents one Web page from the M&S Web site.
Our approach uses the image-processing technique to divide
each page into several regions. In Fig. 7, each recognized region
(i.e., a default_value object) at a high level is highlighted in a
dotted rectangle, and the pattern applicable to each region is
marked with a circled pattern number: the navigation links on
the left and at the bottom follow Pattern 1, and the center region
which displays a list of products is consistent with Pattern 2.

In our approach, those patterns are formalized as graph gram-
mars. We use the Type Editor of VEGGIE to define nodes. The
Type Editor allows developers to specify various properties of a
node, such as types, attributes, and vertices. The left panel of the

598 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012

Fig. 7. M&S Web page.

Fig. 8. Node type Editor in VEGGIE. (a) Node types in Pattern 1. (b) Node
types in Pattern 2.

Type Editor displays all node types, and the right panel shows
the detailed properties of a selected node and allows designers
to modify those properties. In order to improve the efficiency of
the design process, VEGGIE supports a direct import of termi-
nal nodes from a spatial graph, instead of manually designing
them. To avoid cluttering the display space, in the current ver-
sion of VEGGIE, we only explicitly display nodes without their
details. If the mouse moves over a node, detailed information of
the node (e.g., vertices) will be displayed as depicted in Fig. 8.
For example, Fig. 8(a) shows the node types in Pattern 1, while
Fig. 8(b) displays the node types in Pattern 2. In Fig. 8(a), node
types of default_value, text, button, and image are automatically
recognized atomic interface objects, and the rest are composite
interface objects. Object pic is made of a picture and button; ob-
ject Lines represents multiple lines of texts which belong to the
same paragraph; and object Des models different paragraphs. In
Fig. 8(b), node types of default_value, text, listbox, and image
are automatically recognized atomic interface objects. Compos-

Fig. 9. Grammar Editor in VEGGIE.

ite object title is made of text objects, indicating a title. Object
path represents the current location in the Web site and com-
poses of several text objects, object product models an overview
of a product, including both graphical and textual descriptions,
and object products indicates several products.

The VEGGIE Grammar Editor as presented in Fig. 9 en-
ables designers to visually manipulate productions. The left-
most panel of the Grammar Editor lists all the productions.
By clicking on one of the productions, the corresponding de-
tails are displayed in the middle and right panels, represent-
ing the left graph and right graph of the selected produc-
tion, respectively. Fig. 9 shows a production defined in Pat-
tern 2. SGG is a context-sensitive graph grammar and a gray
node represents a context object. Because of limited space,
complete definitions for Patterns 1 and 2 can be found at
http://viscomp.cs.ndsu.nodak.edu/Grammar/grammar.pdf.

Based on the defined graph grammar, page segmentation is
implemented through a spatial parsing. For example, the screen-
shot on the left of Fig. 10 presents a spatial graph, corresponding
to the product list in Fig. 7. By applying the graph grammar of
Pattern 2, we can produce its interpretation in the right side in
Fig. 10.

VII. DISCUSSION

According to the case study in the previous section, we found
that even a complex Web site is made of several simple patterns.
This observation is also confirmed by other researchers [47].
For example, the M&S Web site mainly includes two patterns
(refer to Section VI-B), and each Web page is presented based
on the composition of those patterns. The existence of common
patterns across a Web site makes our approach feasible in prac-
tice. Instead of designing a graph grammar for each page, we
only need to consider a few patterns, which can significantly
reduce the effort of designing a graph grammar. In addition to
M&S, we have investigated some other popular online retailer
Web sites, including buy.com, amazon.com, and newegg.com,
and found that similar patterns are also used in those Web sites.
In other words, the graph grammar that is designed for M&S
can be reused in other similar Web sites with slight modifica-
tions. In the case study, we do find that some Web pages, e.g.,
the customer login page, do not follow any pattern. In this case,

KONG et al.: WEB INTERFACE INTERPRETATION USING GRAPH GRAMMARS 599

Fig. 10. Spatial Graph representing the product list in Fig. 7 and its interpretation.

we use the best effort parsing, which tries to recover as many
structures as possible.

Each pattern describes the layout and organization of infor-
mation at an abstract level. This implies that the instances of
a pattern may be different. For example, in Pattern 1, each
paragraph may include different lines of texts. Using recursive
productions, the graph grammar is powerful to handle those
variations. With the Web patterns, the graph grammar approach
provides a powerful and visual means to specify and analyze
Web pages.

One unique feature of our approach is the complementary
roles of image analysis and graph grammar techniques in an-
alyzing Web interfaces. The image analysis is critical to page
segmentation, since it can significantly simplify the original
Web page by eliminating redundant and blank contents and
consolidating information pieces together. Currently, most ap-
proaches analyze a Web interface according to its DOM struc-
ture. However, even a simple Web page may have a complex
DOM structure. We compare the spatial graph produced from
image analysis with the DOM structure in terms of their com-
plexity, as presented in Table I. Given the Web page in Fig. 7, an
image analysis in our approach will produce a spatial graph with
176 nodes. On the other hand, the corresponding DOM structure
has 1050 nodes, including both HTML elements and scattered
information pieces. The image analysis approach produces the
information that is of only 15% of the DOM’s complexity. We
can find similar observations in other Web pages in the M&S
Web site in Table I. Furthermore, image analysis can divide
a Web interface into several regions. Accordingly, the spatial
parsing can be limited to a small scope with a reduced search

TABLE I
NUMBER OF NODES IN SPATIAL GRAPHS VERSUS DOM STRUCTURES

space. Thus, our approach performs more efficiently. Table II
presents the running time1 of spatial parsing in each region in
five Web pages that are selected from the M&S Web site. The
regions in each Web page are indexed from left to right and top
down. The longest running time is 25 ms (Region 2 in page 4),
which is apparently tolerable as parsing needs to be performed
only once. The time complexity of the SGG parser is critical
to the overall system performance. The SGG parser converts
a 2-D graph to an ordered sequence of nodes based on spatial
features of those nodes and uses an efficient string matching in
the parsing process. SGG parser is developed based on conflu-
ent graph grammars. Informally, the SGG parser only tries one
parsing path. Under the confluence condition, the SGG parser
has a polynomial time complexity [29].

Compared with DOM analysis, image processing is efficient
to extract atomic information objects. On the other hand, a
DOM structure does provide valuable clues about information

1All tests were performed on a Windows PC with an Intel Pentium 3.2GHz
Dual Core CPU and 4G bytes of memory.

600 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012

TABLE II
RUNNING TIME OF SPATIAL PARSING

organizations, such as the hierarchical structure among con-
tainers and actual contents. In the future, we plan to combine
image processing with DOM analysis. More specifically, image
processing is first used to detect regions and basic information
objects. Then, those recognized containers and information ob-
jects are mapped to HTML tags in the DOM structure based
on their spatial properties, i.e., location and size. During the
mapping, the original DOM structure is simplified by removing
empty tags and consolidating related tags together. The map-
ping can also help refine the result of object recognition from
image analysis. In the example in Fig. 3(a), one paragraph may
cross several lines. In the image analysis, each line of texts is
recognized as one individual interface object. By integrating
the image analysis results with the corresponding DOM struc-
ture, we can combine those individual lines of texts together if
all those lines of texts are enclosed in an HTML tag <P>. In
the simplified DOM structure, information objects are classified
based on both the HTML tags and image recognition. Finally,
we can apply a graph grammar to the simplified DOM structure
to interpret its semantics.

Compared with existing heuristic approaches, our approach
provides fine-grained page segmentation. Heuristic approaches
segment a Web page into several regions from top to bot-
tom, without tagging the semantic role of each object. Instead,
our approach interprets a Web interface from bottom to top.
Our approach first recognizes and classifies atomic informa-
tion objects and then uses graph parsing to discover the se-
mantics among those recognized objects. Therefore, our pro-
posed work actually interprets a Web interface, not just di-
viding. While most existing approaches depend on the source
code to segment a Web page, our approach directly analyzes
the screenshot of a Web page without relying on any source
code. Consequently, our solution is applicable to the situations
when source codes are not available, such as surfing the Web
through a remote desktop. Finally, our approach supports the
customization of the page segmentation results. A user can ad-
just a graph grammar to tune the page segmentation. In gen-
eral, a general graph grammar has a higher generality while a
specific graph grammar, which includes detailed application-
dependant semantics (such as cities in the grammar in appendix
1 at http://viscomp.cs.ndsu.nodak.edu/Grammar/grammar.pdf),
provides more detailed interpretation but it has limited general-
ity, since it is application dependant.

VIII. CONCLUSION

In the Web interface interpretation, it is challenging to dis-
cover the semantic structure underlying a Web interface. Dif-

ferent from existing heuristic approaches, this paper develops a
novel approach for page segmentation based on image analysis
and graph grammar. Instead of analyzing DOM structures, our
approach uses advanced image processing to recognize atomic
interface objects and divide an interface into several regions.
The image analysis produces a spatial graph, in which nodes
represent recognized interface objects and edges model spatial
relations, which imply a close semantic relation. Based on the
spatial graph, a spatial parsing is performed to recover the se-
mantics of the corresponding Web page. Because of the distinct
capability of spatial specifications in the abstract syntax, the
SGG is selected as the definition formalism for page segmenta-
tion. We have tested our approach on the M&S Web site, which
shows promising results.

As the future work, we will conduct more experiments to in-
vestigate issues like generality and efficiency. Especially, we
will investigate how to improve the efficiency of designing
a graph grammar. Although the reuse of patterns across dif-
ferent Web sites can reduce the efforts of designing a graph
grammar, we plan to further improve the efficiency by apply-
ing a grammar-induction algorithm to semiautomate the gram-
mar design. Given sample interface snapshots, human experts
first highlight most important substructures and give them some
user-friendly names. Then, based on those manually highlighted
substructures, a grammar induction algorithm produces a graph
grammar. In addition to elaborating an induced graph grammar,
human experts can also add spatial specifications to the gener-
ated graph grammars. Once the automatically produced graph
grammar is evaluated and refined, it is used to interpret Web
interfaces. Future work also includes evaluating the generality
of the image recognition algorithm and improving the accuracy.
An error in the image recognition can affect the interpretation
of a Web interface. We will investigate an iterative process-
ing. The objects that cannot be interpreted in the graph parsing
are returned to the image recognition for the second round of
recognition, which is then passed to the graph parser for further
analysis. This process can be supervised by human experts to
identify the recognition errors and improve the accuracy. Future
work also includes exploring the idea of “a cascade of classi-
fiers” [41], which has multiple stages, in the image processing
to improve the performance.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their insightful and constructive comments that have helped us
to significantly improve the presentation.

KONG et al.: WEB INTERFACE INTERPRETATION USING GRAPH GRAMMARS 601

REFERENCES

[1] H. Ahmadi and J. Kong, “Efficient web browsing on small screens,”
in Proc. ACM Int. Working Conf. Adv. Visual Interfaces, 2008, pp. 23–
30.

[2] A. Arasu and H. Garcia-Molina, “Extracting structured data from web
pages,” in Proc. Special Interest Group Manage. Data Conf., 2003,
pp. 337–348.

[3] F. Ashraf and R. Alhajjt, “ClusTex: Information extraction from HTML
pages,” in Proc. 21st Int. Conf. Adv. Inf. Netw. Appl. Workshops, May
2007, pp. 355–360.

[4] F. Ashraf, T. Ozyer, and R. Alhajj, “Employing clustering techniques for
automatic information extraction from HTML documents,” IEEE Trans.
Syst., Man, Cybern.—Part C: Appl. Rev., vol. 38, no. 5, pp. 660–673, Sep.
2008.

[5] K. Ates, J. Kukluk, L. Holder, D. Cook, and K. Zhang, “Graph grammar
induction on structural data for visual programming,” in Proc. IEEE 18th
Int. Conf. Tools Artif. Intell., Nov. 2006, pp. 232–242.

[6] K. Ates and K. Zhang, “Constructing VEGGIE: Machine learning for
context-sensitive graph grammars,” in Proc. IEEE 19th Int. Conf. Tools
Artif. Intell., Oct. 2007, pp. 456–463.

[7] S. Baluja, “Browsing on small screens: Recasting web-page segmentation
into an efficient machine learning framework,” in Proc. World Wide Web,
2006, pp. 33–42.

[8] O. Boiman, E. Shechtman, and M. Irani, “In defense of nearest-neighbor
based image classification,” in Proc. IEEE Conf. Comput. Vision Pattern
Recogn., Jun. 2008, pp. 1–9.

[9] Y. Borodin, J. Mahmud, and I. V. Ramakrishnan, “Context browsing with
mobiles—When less is more,” in Proc. 5th Int. Conf. Mobile Syst., Appl.
Services, 2007, pp. 3–15.

[10] R. Burget, “Visual HTML document modeling for information extrac-
tion,” in Proc. Reconfigurable Architectures Workshop, 2005, pp. 17–
24.

[11] O. Buyukkokten, H. Garcia-Molina, and A. Paepcke, “Accordion summa-
rization for end-game browsing on PDAs and cellular phones,” in Proc.
ACM Special Interest Group Comput.–Human Interaction, 2001, pp. 213–
220.

[12] O. Buyukkokten, H. Garcia-Molina, and A. Paepcke, “Seeing the
whole in parts: Text summarization for web browsing on handheld de-
vices,” presented at the Proc. of the World Wide Web, Hong Kong,
2001.

[13] D. Cai, S. Yu, J. Wen, and W. Ma, “Extracting content structure for Web
pages based on visual representation,” in Proc. 5th Asia Pac. Web Conf.,
2003, pp. 406–417.

[14] Y. Chen, W. Y. Ma, and H. J. Zhang, “Detecting web page structure for
adaptive viewing on small form factor devices,” in Proc. World Wide Web,
2003, pp. 225–233.

[15] J. Chen, X. Xie, W. Ma, and H. Zhang, “Adapting web pages for small-
screen devices,” IEEE Internet Comput., vol. 9, no. 1, pp. 50–56, Jan./Feb.
2005.

[16] S. C. Chen, S. H. Rubin, M. L. Shyu, and C. C. Zhang, “A dynamic user
concept pattern learning framework for content-based image retrieval,”
IEEE Trans. Syst., Man, Cybern.: Part C Appl. Rev., vol. 36, no. 6, pp. 772–
783, Nov. 2006.

[17] J. Chen and K. Xiao, “Perception-oriented online news extraction,” in
Proc. 8th ACM/IEEE-CS Joint Conf. Digital Libraries, 2008, pp. 363–
366.

[18] P. T. Cox and T. Smedley, “Building environments for visual programming
of robots by demonstration,” J. Visual Languages Comput., vol. 11, no. 5,
pp. 549–571, 2000.

[19] V. Crescenzi, G. Mecca, and P. Merialdo, “RoadRunner: Towards auto-
matic data extraction from large web sites,” in Proc. Very Large Data
Bases Conf., 2001, pp. 109–118.

[20] E. J. Golin, “Parsing visual languages with picture layout grammars,” J.
Visual Languages Comput., vol. 4, no. 2, pp. 371–394, 1991.

[21] X. D. Gu, J. L. Chen, W. Y. Ma, and G. L. Chen, “Visual based con-
tent understanding towards web adaptation,” in Proc. Int. Conf. Adaptive
Hypermedia, 2002, pp. 164–173.

[22] S. Gupta, G. Kaiser, D. Neistadt, and P. Grimm, “DOM-based content
extraction of HTML documents,” in Proc. World Wide Web, 2003, pp. 207–
214.

[23] G. Hattori, K. Hoashi, K. Matsumoto, and F. Sugaya, “Robust web page
segmentation for mobile terminal using content-distances and page layout
information,” in Proc. 16th Int. Conf. World Wide Web, 2007, pp. 361–
370.

[24] A. Holzinger, “Usability engineering for software developers,” Commun.
ACM, vol. 48, no. 1, pp. 71–74, 2005.

[25] T. H. Hou and M. D. Pern, “A computer vision-based shape-classification
system using image projection and a neural network,” Int. J. Adv. Manuf.
Technol., vol. 15, pp. 843–850, 1999.

[26] M. Y. Ivory and R. Megraw, “Evolution of web site design patterns,” ACM
Trans. Inf. Syst., vol. 23, no. 4, pp. 463–497, 2005.

[27] A. K. Jain, Fundamentals of Digital Image Processing. Englewood
Cliffs, NJ: Prentice-Hall, 1998.

[28] E. Kaasinen, M. Aaltonene, J. Kolari, S. Melakoski, and T. Laakko,
“Two approaches to bringing internet services to WAP devices,” Com-
put. Netw.: Int. J. Comput. Telecommun. Netw., vol. 33, pp. 231–246,
2000.

[29] J. Kong, K. Zhang, and X. Q. Zeng, “Spatial graph grammar for graphic
user interfaces,” ACM Trans. Human-Comput. Interaction, vol. 13, no. 2,
pp. 268–307, 2006.

[30] J. Kong, K. L. Ates, K. Zhang, and Y. Gu, “Adaptive mobile interfaces
through grammar induction,” in Proc. IEEE 20th Int. Conf. Tools Artif.
Intell., 2008, pp. 133–140.

[31] N. Kushmerick, D. S. Weld, and R. B. Doorenbos, “Wrapper induction
for information extraction,” in Proc. Int. Joint Conf. Artif. Intell., 1997,
pp. 729–737.

[32] M. Labský, V. Svátek, O. Šváb, P. Praks, M. Krátký, and V. Snášel,
“Information extraction from HTML product catalogues: from source
code and images to RDF,” in Proc. IEEE/WIC/ACM Int. Conf. Web Intell.,
2005, pp. 401–404.

[33] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions
and reversals,” Doklady Akademii Nauk SSSR, vol. 163, no. 4, pp. 845–
884, 1965.

[34] N. Mavridis, W. Kazmi, and P. Toulis, “Friends with faces: How social
networks can enhance face recognition and vice versa,” in Computa-
tional Social Networks Analysis: Trends, Tools and Research Advances.
Berlin, Germany: Springer-Verlag, 2009.

[35] N. Milic-Frayling and R. Sommerer, “SmartView: Flexible viewing of
web page contents,” presented at the Proc. of the 11th World Wide Web
Conf. (poster paper), New York, 2002.

[36] Opera Software ASA. (2008). [Online]. Available: http://www.opera.com/
products/mobile/smallscreen

[37] F. Paterno and G. Zichittella, “Desktop-to-mobile web adaptation through
customizable two-dimensional semantic redesign,” in Proc. 3rd Int. Conf.
Human-Centered Softw. Eng., 2010, pp. 79–94.

[38] A. Roudaki and J. Kong, “Graph grammar based web data extraction,”
Tech. Rep. NDSU-CS-TR-10-002, North Dakota State Univ., Fargo, USA,
2010.

[39] G. Rozenberg (Ed.), Handbook on Graph Grammars and Computing by
Graph Transformation: Foundations, vol. 1. Singapore: World Scien-
tific, 1997.

[40] B. Shneiderman, Designing the User Interface: Strategies for Effective
Human-Computer Interaction. Reading, MA: Addison-Wesley Long-
man, 2009.

[41] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proc. Comput. Visi. Pattern Recognit., 2001, pp. I-
511–I-518.

[42] T. L. Wong and W. Lam, “Adapting web information extraction knowl-
edge via mining site-invariant and site-dependent features,” ACM Trans.
Internet Technol., vol. 7, no. 1, art no. 6, 2007.

[43] X. Y. Xiao, Q. Luo, D. Hong, H. Fu, X. Xie, and W. Y. Ma, “Browsing on
small displays by transforming web pages into hierarchically structured
subpages,” ACM Trans. Web, vol. 3, no. 1, art no. 4, 2009.

[44] Y. D. Yang, J. L. Chen, and H. J. Zhang, “Adaptive delivery of HTML
contents,” in Proc. World Wide Web, 2000, pp. 24–25.

[45] Y. D. Yang and H. J. Zhang, “HTML page analysis based on visual cues,”
in Proc. 6th Int. Conf. Document Analysis Recognit., 2001, pp. 859–
864.

[46] S. P. Yu, D. Cai, J. R. Wen, and W. Y. Ma, “Improving pseudo-relevance
feedback in web information retrieval using web page segmentation,” in
Proc. Int. Conf. World Wide Web, 2003, pp. 11–18.

[47] Z. Zhang, B. He, and K. C.-C. Chang, “Understanding web query inter-
faces: Best-effort parsing with hidden syntax,” in Proc. Int. Conf. ACM
Special Interest Group Manage. Data, 2004, pp. 107–118.

[48] K. Zhang and J. Kong, “Exploring semantic roles of web interface compo-
nents,” in Proc. 2010 IEEE Int. Conf. Mach. Web Intell., 2010, pp. 8–14.

[49] S. Zheng, R. Song, and J. Wen, “Template-independent news extraction
based on visual consistency,” in Proc. 22nd Nat. Conf. Artif. Intell., 2007,
vol. 2, pp. 1507–1512.

602 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012

Jun Kong received the B.S. degree from the
Huazhong University of Science and Technology,
Wuhan, China, in 1998, the M.S. degree from
Shanghai Jiao Tong University, Shanghai, China, in
2001, and the Ph.D. degree from the University of
Texas at Dallas, Richardson, in 2005, all in computer
science.

He has been an Assistant Professor of computer
science with North Dakota State University, Fargo,
since 2006. His research and teaching interests in-
clude human–computer interaction, visual languages,

software modeling and design, and pervasive computing.

Omer Barkol received the B.Sc. degree in mathemat-
ics and computer science, and the Ph.D. and M.Sc.
degrees in computer science, all from the Technion–
Israel Institute of Technology, Haifa, Israel, where he
was focused on theoretical computer science, coding
theory, and cryptography.

He is currently a Research Manager with HP Labs,
Haifa. His main research deals with analytics and col-
laboration in large organizations, with a focus on IT
management. In addition, he leads research on graph-
data mining. Since 2008, he has been with HP Labs,

involved both in the area of imaging and printing, and in the research area of IT
information management. Prior to joining HP Labs, he has led a software team
in Charlotte’s Web Networks, dealing with routing protocols.

Ruth Bergman received the B.S. and
M.S. degrees in computer science from the Univer-
sity of California, San Diego, and the Ph.D. degree
in electrical engineering and computer science from
the Massachusetts Institute of Technology (MIT),
Cambridge.

She is currently the Director of HP Labs, Haifa,
Israel. She joined HP Labs in 2001, where she leads
a research agenda in analytics, collaboration, and
automation in large organizations, with a focus on IT
management and serviceability of printing systems.

Prior to joining HP Labs, she was a Researcher with the NASA Jet Propulsion
Laboratory, Pasadena, CA, and with the Lincoln Laboratory, MIT. She has
authored six book chapters and ten conference papers. She holds seven patents
and 17 patent applications. Her research interests include data mining, machine
learning, and computer vision.

Ayelet Pnueli is currently a Research Scientist with
HP Labs, Haifa, Israel.

Sagi Schein received the Ph.D. degree in com-
puter graphics and geometric computing from the
Technion–Israel Institute of Technology, Haifa,
Israel, where he was focused on the applications of
multivariate B-spline functions to computer graph-
ics, computer-aided geometric design, and medical
imaging.

He is currently a Senior Research Scientist with
HP Labs, Haifa. His main research interests include
developing image processing, computer vision, and
data-processing algorithms on commodity graphics

cards.

Kang Zhang received the B.Eng. degree in com-
puter engineering from the University of Electronic
Science and Technology, Chengdu, China, in 1982,
and the Ph.D. degree from the University of Brighton,
Brighton, U.K., in 1990.

He is currently a Professor and Director of Visual
Computing Lab, Department of Computer Science,
University of Texas at Dallas (UT-Dellas), Richard-
son. He is also an Adjunct Professor of the UT-Dallas
Computer Engineering Program and GIS Program.
Prior to joining UT-Dallas, he held academic posi-

tions in the U.K., Australia, and China. His current research interests include
visual languages, aesthetic computing, and software engineering. He has pub-
lished more than 180 papers in these areas. He has authored and edited five
books.

Dr Zhang is on the Editorial Boards of the Journal of Visual Languages and
Computing, the International Journal of Software Engineering and Knowledge
Engineering, and the International Journal of Advanced Intelligence.

Chunying Zhao received the B.E. and M.E. de-
grees in computer engineering from Nankai Univer-
sity, Tianjin, China, in 2002 and 2005, respectively,
and the Ph.D. degree from the University of Texas at
Dallas, Richardson, in 2010.

She is currently an Assistant Professor with the
School of Computer Sciences, Western Illinois Uni-
versity, Macomb. Her research interests include soft-
ware visualization, program comprehension, visual
programming languages, and web services.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

