

RGG+: An Enhancement to the Reserved Graph Grammar Formalism

Xiaoqin Zeng1,2 Kang Zhang1 Jun Kong1 Guang-Lei Song1
1Department of Computer Science, University of Texas at Dallas, Texas 75083, USA

2Department of Computer Science, Hohai University, Nanjing 210098, China

ASBTRACT
Enhancing the Reserved Graph Grammar (RGG)
formalism, this paper introduces a size-increasing
condition on the structure of graph grammars’
productions to simplify the definition of graph grammars,
and a general parsing algorithm to extend the power of
the RGG parsing algorithm.

1. Introduction
Like textual programming languages that are usually

equipped with proper formal syntax definitions and
parsers, graphical or visual languages need the support of
such mechanisms. This paper presents our recent work
on an attempt to improve the RGG formalism [1] in two
directions: simplify the design of an RGG, and enhance
its expressive power. We will call this enhanced version
RGG+.

The contribution of the RGG+ is twofold. One is to
replace the multiple layers of labels with the usual two
layers, i.e., terminal and non-terminal labels, and
introduce a size-increasing condition to graph grammar
productions to solve the membership problem. The size-
increasing condition only imposes some weak
restrictions on the structure of productions, and is more
intuitive and easier to handle than the layer
decomposition and the lexicographical order [2] used in
the RGG. The other is to give a more general parsing
algorithm that does not require its graph grammars to be
confluent. This greatly enhances the parsing capability.

2. Notations and Concepts
Φ : An empty set.
Ω : A finite set of labels, consisting of two

disjoint subsets, terminal label set TΩ and
non-terminal label set NTΩ , i.e.,

NTT Ω∪Ω=Ω and Φ=Ω∩Ω NTT .
: Cardinality of a set.

N : A node set consisting of a terminal node
set TN and a non-terminal node set NTN ,
i.e., NTT NNN ∪= with Φ=∩ NTT NN .

f : A labeling function establishing a
mapping Ω→N .

),(: RLp = : A production consisting of a left L and a

right R graphs over the same label set Ω .
),(GHR : A set of redexes of graph G , which are

sub-graphs of graph H .
)

~
,,,(HGGHT ′ : Transforming graph H by replacing its

sub-graph),(
~

GHRH ∈ with G′ to
yield a new graph.

HH R ′a : R-application or reduction of a production
),(: RLp = to graph H , namely

)
~

,,,(HRLHTH =′ .

HH L ′→ : L-application or derivation of a production
),(: RLp = to graph H , namely

)
~

,,,(HLRHTH =′ .

nHH *
a : A series of R-applications: 1

1 HH R
a ,

2
2

1 HH R
a , …, n

Rn
n HH a1−

including the case 0=n when nHH =
and HH a .

nHH *→ : A series of L-applications: 1
1 HH L→ ,

2
2

1 HH L→ , …, n
Ln

n HH →−1
including the case 0=n when nHH =
and HH → .

3. The Enhancements
This section inherits from the RGG the most basic

concepts, such as graph element, graph, marking,
isomorphism, redex, and graph transformations etc.

3.1 Definition of a RGG+ and its language
Definition 3.1),,(: Ω= PAgg is a graph grammar called

RGG+, where A is an initial graph, P a set of graph
grammar productions, Ω is a finite label set and can be
further divided into two disjoint subsets, TΩ and NTΩ ,
for terminals and non-terminals respectively. For each
production, PRLp ∈=),(, the following conditions
must be satisfied:
• R is nonempty,

• L and R are over the same label set Ω , and

• the size of R must be no less than that of L , i.e.,
|..||..| NRpNLp ≤ ; if they are equal, the number of

non-terminal nodes in R must be more than that in
L , i.e., |..||..||..||..| TT NRpNLpNRpNLp <→= .

Definition 3.2 Let),,(: Ω= PAgg be a RGG+, its
language)(ggΓ is a set of graphs that can be derived

from the initial graph A and each graph node has one
terminal label, i.e.,

}).(|{)(* TNGfGAGgg Ω⊆∧=Γ a .

3.2 Decidability
Theorem 3.1 For every RGG+),,(: Ω= PAgg and for
an arbitrary nonempty graph H (Φ≠NH .), it is
decidable whether or not H is in)(ggΓ .

Proof: For a given graph H with a finite number of
terminal nodes, namely TNHNH .. = being a finite set,
the total number of graphs H

)

 with Ω⊆).(NHf
)

 and

|.||.| NHNH ≤
)

 must be finite under finite Ω .
Considering a sequence of graphs
 HHHHHHA nn == −

)))))

,,...,,, 1210

such that Φ≠NT
i NH .

)

 and |||| 1+≤ ii HH
))

 for

1,...,1,0 −= ni and ji HH
))

≠ if ji ≠ , the number of

such sequences without repetition is also finite. Thus we
can enumerate all such sequences and check whether

1
*

+→ ii HH
))

 (1,...,1,0 −= ni) holds for at least one of
them. If so, then clearly)(ggH Γ∈ , otherwise,

)(ggH Γ∉ . □

4. Graph Parsing
The parsing algorithm of the RGG is very efficient in

parsing any graph in polynomial time under the
condition that the graph is derivable from the selection-
free grammars [1]. In order to support the specification
of those context-sensitive grammars that are not
selection-free, we develop a more general parsing
algorithm that attempts to search all possible parsing
paths instead of just one as in the RGG.

4.1. A Parsing Algorithm
Parsing (Graph H , ProductionSet P)
{
 Initialization;
loop-1: while (AH ≠)
 {
 DELIMITER → redexStack; // push
Loop-2: for all Pp ∈

 {

 redexSet = FindRedexForRight(H , Rp.);

loop-3: for all redex ∈ redexSet;
 redex → redexStack; // push

 }
 redex ← redexStack; // pop
loop-4: while (redex = DELIMITER)
 {
 H ← hostStack; // pop
 redex ← redexStack; // pop
 if (redex = NULL)
 return(“Invalid”);
 }
 hostStack ← H ; // push
 H = RightApplication(H , p , redex);

 }
 return(“valid”);
}

In the above function, the R-application is the same as
that in the RGG, while the search for redexes needs to be
extended from searching for one redex to all redexes as
follows.

FindRedexForRight(Graph H , Graph R);
{
 redexSet = Φ ;
 nodeSequence = orderNodeSequence(R);

candidateSet = findNodeSequenceSet(H ,
nodeSequence);

 for all candidate ∈ candidateSet
 redexSet = redexSet+match(candidate, H , R);
 return(redexSet);
}

The function orderNodeSequence(R) sequences the
nodes in the right graph according to their labels’
alphabetic order. The function findNodeSequenceSet(H ,
nodeSequence) finds all possible node sequences from
the host graph, each of which is isomorphic to
nodeSequence. Finally, the function match(candidate,
H , R) checks whether a candidate in the host graph is a
redex of the right graph, if so, the candidate is returned
as a redex, otherwise, a null is returned.

4.2. Parsing Complexities
The parsing algorithm is no doubt more powerful but

its performance may be seriously penalized because of
the extremely large search space.

4.2.1. Time Complexity
Theorem 5.1 The time complexity of the parsing

algorithm is))!()
!

((rhh hh
r
n

O , where h is the number of

nodes in the host graph to be parsed, r is the maximal
number of nodes in the right graphs of all productions,
and n is the number of productions in the given RGG+.

Proof: According to the structure of the parsing
algorithm, its maximal time complexity can be expressed
as:

)))(((243121 tlltllOt +++= ,
where 1l is the maximal number of iterations in the
outmost loop-1, 2l is the number of iterations in the first
inner loop-2, 3l is the number of iterations in the
innermost loop-3, 4l is the number of iterations in the

second inner loop-4, and 1t and 2t are the time
complexities of FindRedexForRight() and
RightApplication() respectively.

We first consider 2l , which is in fact the number of
productions, i.e., ||2 Pnl == . Since 32 ll ⋅ is the total
number of actions in pushing redexes into the redex
stack and 4l is the partial number of actions in popping
redexes from the redex stack, 4l should be no more than

32 ll ⋅ , and thus can be ignored. Since 3l is the number of

redexes found in the host graph with respect to the right
graph of a given production, the maximal number of
redexes is the all possible node combinations r

hC , thus

)(3
rr

h hOCl =≤ . When considering 1l , the worst case
is when the algorithm’s answer is ‘invalid’, and all
redexes found during parsing will enter the stack. Each
of the redexes, when popped out of the stack, leads to an
iteration of the outmost loop. Therefore, 1l equals to the
number of the redexes found.

An iteration of the outmost loop produces no more
than r

hnC redexes for n productions and performs one
R-application. According to the size-increasing condition,
each R-application would reduce the size of the derived
host graph. Since there are at most h R-applications that
may not reduce the host graph size and an R-application
will reduce the host graph size by at least 1, the
following derivations hold for 1l :

r
rhh

r
rhh

r
h

r
h

hr
h nCnCnCnCnCl)()1(211)(−−−−−−−≤

∏
−−

=

− +
−

=
1

1

2

!!
)!(

)
!)!(

!
(

rh

u

hrh

ur
ru

rrh
h

n

))
!

((
1

1

2 ∏
−−

=

=
rh

u

rrhh uh
r
n

O

))!()
!

((rhh hh
r
n

O=

As for 1t and 2t , since the maximal possible number

of selections of r nodes from h nodes is
)1)...(1(+−−= rhhhAr

h , the worst cases of searching

for all redexes of a right graph in a given host graph must
be)(1

rhOt = . Since 2t is independent of h , it can be
considered as)1(2 Ot = that is bounded by a constant
time.

Combining all the above discussions, we can finally
obtain:

))!()
!

((rhh hh
r
n

Ot = . □

4.2.2. Space Complexity
Theorem 4.2 The space complexity of the parsing
algorithm is)(1+rhO , where h is the number of nodes
in the host graph to be parsed, r is the maximal number
of nodes in all the right graphs of productions.

Proof: Obviously the main space-consuming
components are the redex stack and the host graph stack
used in the parsing algorithm. We can therefore express
the maximal space complexity as:

21 sss += ,

where 1s is the space used by the redex stack and 2s is
the one by host graph stack. Without loss of generality,
we can assume that the space taken by a redex is r and
that by a host graph is h . Different from time
complexity, the use of the stack space is not always
increasing because pop operations would release space
for reuse. Hence, the worst case is the maximal occupied
space along the longest reduction path, and the following
derivations hold for the redex stack and the host graph
stack respectively.

)....()(11
r

rhh
r
h

r
h nCnChnCrs −−− +++≤

)
!

)!(
)!(

!
(

)!1(

1

0
∑−−

=

++
−−

=
rh

u u
ru

rh
hh

r
n

)(
1

0

1 ∑−−

=

+ +=
rh

u

rr uhO

)(1+= rhO ;

rhhhs ++−+= ...)1(2)(2hO= .

Since 1≥r , we can obtain:
)(1+= rhOs . □
From the above analysis, we observe that the space

complexity is bounded by a polynomial factor while the
time complexity is extremely high. Hence, improving the
time efficiency of parsing is our immediate future work.

References
[1] D. Q. Zhang, K. Zhang, and J. Cao, “A Context-

Sensitive Graph Grammar Formalism for the
Specification of Visual Languages”, The Computer
Journal, (44)3, pp.187-200, 2001.

[2] J. Rekers and A. Schürr, “Defining and Parsing
Visual Languages with Layered Graph Grammars”,
Journal of Visual Languages and Computing, 8(1),
pp.27-55, Feb. 1997.

