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ASBTRACT 
Enhancing the Reserved Graph Grammar (RGG) 
formalism, this paper introduces a size-increasing 
condition on the structure of graph grammars’ 
productions to simplify the definition of graph grammars, 
and a general parsing algorithm to extend the power of 
the RGG parsing algorithm. 

1. Introduction 
Like textual programming languages that are usually 

equipped with proper formal syntax definitions and 
parsers, graphical or visual languages need the support of 
such mechanisms. This paper presents our recent work 
on an attempt to improve the RGG formalism [1] in two 
directions: simplify the design of an RGG, and enhance 
its expressive power. We will call this enhanced version 
RGG+. 

The contribution of the RGG+ is twofold. One is to 
replace the multiple layers of labels with the usual two 
layers, i.e., terminal and non-terminal labels, and 
introduce a size-increasing condition to graph grammar 
productions to solve the membership problem. The size-
increasing condition only imposes some weak 
restrictions on the structure of productions, and is more 
intuitive and easier to handle than the layer 
decomposition and the lexicographical order [2] used in 
the RGG. The other is to give a more general parsing 
algorithm that does not require its graph grammars to be 
confluent. This greatly enhances the parsing capability.  

2. Notations and Concepts 
Φ : An empty set.  
Ω :  A finite set of labels, consisting of two 

disjoint subsets, terminal label set TΩ  and 
non-terminal label set NTΩ , i.e., 

NTT Ω∪Ω=Ω  and Φ=Ω∩Ω NTT . 
: Cardinality of a set. 

N :  A node set consisting of a terminal node 
set TN  and a non-terminal node set NTN , 
i.e., NTT NNN ∪=  with Φ=∩ NTT NN . 

f :  A labeling function establishing a 
mapping Ω→N . 

),(: RLp = : A production consisting of a left L  and a 

right R  graphs over the same label set Ω .  
),( GHR : A set of redexes of graph G , which are 

sub-graphs of graph H . 
)

~
,,,( HGGHT ′ : Transforming graph H  by replacing its 

sub-graph ),(
~

GHRH ∈  with G′  to 
yield a new graph. 

HH R ′a : R-application or reduction of a production 
),(: RLp =  to graph H , namely 

)
~

,,,( HRLHTH =′ . 

HH L ′→ : L-application or derivation of a production 
),(: RLp =  to graph H , namely 

)
~

,,,( HLRHTH =′ . 

nHH *
a : A series of R-applications: 1

1 HH R
a , 

2
2

1 HH R
a , …, n

Rn
n HH a1−  

including the case 0=n  when nHH =  
and HH a . 

nHH *→ : A series of L-applications: 1
1 HH L→ , 

2
2

1 HH L→ , …, n
Ln

n HH →−1  
including the case 0=n  when nHH =  
and HH → . 

3. The Enhancements 
This section inherits from the RGG the most basic 

concepts, such as graph element, graph, marking, 
isomorphism, redex, and graph transformations etc.  

3.1 Definition of a RGG+ and its language 
Definition 3.1 ),,(: Ω= PAgg  is a graph grammar called 

RGG+, where A  is an initial graph, P  a set of graph 
grammar productions, Ω  is a finite label set and can be 
further divided into two disjoint subsets, TΩ  and NTΩ , 
for terminals and non-terminals respectively. For each 
production, PRLp ∈= ),( , the following conditions 
must be satisfied: 
• R  is nonempty, 

• L  and R  are over the same label set Ω , and 



 

• the size of R  must be no less than that of L , i.e., 
|..||..| NRpNLp ≤ ; if they are equal, the number of 

non-terminal nodes in R  must be more than that in 
L , i.e., |..||..||..||..| TT NRpNLpNRpNLp <→= . 

Definition 3.2 Let ),,(: Ω= PAgg  be a RGG+, its 
language )(ggΓ  is a set of graphs that can be derived 

from the initial graph A  and each graph node has one 
terminal label, i.e.,  

}).(|{)( * TNGfGAGgg Ω⊆∧=Γ a . 

3.2 Decidability 
Theorem 3.1 For every RGG+ ),,(: Ω= PAgg  and for 
an arbitrary nonempty graph H  ( Φ≠NH . ), it is 
decidable whether or not H  is in )(ggΓ . 

Proof: For a given graph H  with a finite number of 
terminal nodes, namely TNHNH .. =  being a finite set, 
the total number of graphs H

)

 with Ω⊆).( NHf
)

 and 

|.||.| NHNH ≤
)

 must be finite under finite Ω . 
Considering a sequence of graphs               
 HHHHHHA nn == −

)))))

,,...,,, 1210  

such that Φ≠NT
i NH .

)

 and |||| 1+≤ ii HH
))

 for 

1,...,1,0 −= ni  and ji HH
))

≠  if ji ≠ , the number of 

such sequences without repetition is also finite. Thus we 
can enumerate all such sequences and check whether 

1
*

+→ ii HH
))

 ( 1,...,1,0 −= ni ) holds for at least one of 
them. If so, then clearly )(ggH Γ∈ , otherwise, 

)(ggH Γ∉ .                    □ 

4. Graph Parsing 
The parsing algorithm of the RGG is very efficient in 

parsing any graph in polynomial time under the 
condition that the graph is derivable from the selection-
free grammars [1]. In order to support the specification 
of those context-sensitive grammars that are not 
selection-free, we develop a more general parsing 
algorithm that attempts to search all possible parsing 
paths instead of just one as in the RGG.  

4.1. A Parsing Algorithm 
Parsing (Graph H , ProductionSet P ) 
{ 
            Initialization; 
loop-1: while ( AH ≠ ) 
  { 
   DELIMITER → redexStack;                     // push 
Loop-2: for all Pp ∈  

   { 

    redexSet = FindRedexForRight( H , Rp. ); 

loop-3:   for all redex ∈  redexSet; 
 redex → redexStack;                     // push 

   } 
    redex ← redexStack;                     // pop 
loop-4:  while (redex = DELIMITER) 
       { 
       H  ← hostStack;                      // pop 
        redex ← redexStack;                     // pop 
        if (redex = NULL) 
         return(“Invalid”); 
       } 
       hostStack ← H ;                      // push 
       H = RightApplication( H , p , redex); 

  } 
  return(“valid”); 
} 

In the above function, the R-application is the same as 
that in the RGG, while the search for redexes needs to be 
extended from searching for one redex to all redexes as 
follows. 

 
FindRedexForRight(Graph H , Graph R ); 
{ 
    redexSet = Φ ; 
    nodeSequence = orderNodeSequence( R ); 

candidateSet = findNodeSequenceSet( H ,   
nodeSequence); 

    for all candidate ∈ candidateSet 
         redexSet = redexSet+match(candidate, H , R ); 
    return(redexSet); 
} 

The function orderNodeSequence( R ) sequences the 
nodes in the right graph according to their labels’ 
alphabetic order. The function findNodeSequenceSet( H , 
nodeSequence) finds all possible node sequences from 
the host graph, each of which is isomorphic to  
nodeSequence. Finally, the function match(candidate, 
H , R ) checks whether a candidate in the host graph is a 
redex of the right graph, if so, the candidate is returned 
as a redex, otherwise, a null is returned.  

4.2.  Parsing Complexities 
The parsing algorithm is no doubt more powerful but 

its performance may be seriously penalized because of 
the extremely large search space. 

4.2.1. Time Complexity 
Theorem 5.1 The time complexity of the parsing 

algorithm is ))!()
!

(( rhh hh
r
n

O , where h  is the number of 

nodes in the host graph to be parsed, r  is the maximal 
number of nodes in the right graphs of all productions, 
and n  is the number of productions in the given RGG+. 

Proof: According to the structure of the parsing 
algorithm, its maximal time complexity can be expressed 
as: 



 

)))((( 243121 tlltllOt +++= , 
where 1l  is the maximal number of iterations in the 
outmost loop-1, 2l  is the number of iterations in the first 
inner loop-2, 3l  is the number of iterations in the 
innermost loop-3, 4l  is the number of iterations in the 

second inner loop-4, and 1t  and 2t  are the time 
complexities of FindRedexForRight() and 
RightApplication() respectively. 

We first consider 2l , which is in fact the number of 
productions, i.e., ||2 Pnl == . Since 32 ll ⋅  is the total 
number of actions in pushing redexes into the redex 
stack and 4l  is the partial number of actions in popping 
redexes from the redex stack, 4l  should be no more than 

32 ll ⋅ , and thus can be ignored. Since 3l  is the number of 

redexes found in the host graph with respect to the right 
graph of a given production, the maximal number of 
redexes is the all possible node combinations r

hC , thus 

)(3
rr

h hOCl =≤ . When considering 1l , the worst case 
is when the algorithm’s answer is ‘invalid’, and all 
redexes found during parsing will enter the stack. Each 
of the redexes, when popped out of the stack, leads to an 
iteration of the outmost loop. Therefore, 1l  equals to the 
number of the redexes found.  

An iteration of the outmost loop produces no more 
than r

hnC  redexes for n  productions and performs one 
R-application. According to the size-increasing condition, 
each R-application would reduce the size of the derived 
host graph. Since there are at most h  R-applications that 
may not reduce the host graph size and an R-application 
will reduce the host graph size by at least 1, the 
following derivations hold for 1l : 
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As for 1t  and 2t , since the maximal possible number 

of selections of r  nodes from h  nodes is 
)1)...(1( +−−= rhhhAr

h , the worst cases of searching 

for all redexes of a right graph in a given host graph must 
be )(1

rhOt = . Since 2t  is independent of h , it can be 
considered as )1(2 Ot =  that is bounded by a constant 
time. 

Combining all the above discussions, we can finally 
obtain: 

   ))!()
!

(( rhh hh
r
n

Ot = .               □ 

4.2.2.  Space Complexity 
Theorem 4.2 The space complexity of the parsing 
algorithm is )( 1+rhO , where h  is the number of nodes 
in the host graph to be parsed, r  is the maximal number 
of nodes in all the right graphs of productions. 

Proof: Obviously the main space-consuming 
components are the redex stack and the host graph stack 
used in the parsing algorithm. We can therefore express 
the maximal space complexity as: 

21 sss += , 

where 1s  is the space used by the redex stack and 2s  is 
the one by host graph stack. Without loss of generality, 
we can assume that the space taken by a redex is r  and 
that by a host graph is h . Different from time 
complexity, the use of the stack space is not always 
increasing because pop operations would release space 
for reuse. Hence, the worst case is the maximal occupied 
space along the longest reduction path, and the following 
derivations hold for the redex stack and the host graph 
stack respectively. 
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)( 1+= rhO ; 

rhhhs ++−+= ...)1(2 )( 2hO= . 

Since 1≥r , we can obtain: 
             )( 1+= rhOs .                             □ 
From the above analysis, we observe that the space 

complexity is bounded by a polynomial factor while the 
time complexity is extremely high. Hence, improving the 
time efficiency of parsing is our immediate future work. 
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